• Title/Summary/Keyword: Concrete Hydration

Search Result 1,005, Processing Time 0.031 seconds

A proposed temperature crack index table based on correlation between temperature cracks and construction methods in subway concrete box structures (지하철 콘크리트 BOX 구조물의 수화균열에 대한 상관관계 분석 및 온도균열지수표 제시)

  • Song, Suk-Jun;Park, Ji-Woong;Kim, Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1437-1443
    • /
    • 2010
  • Thermal stresses due to the heat of hydration can cause extensive cracking in subway structures. In order to reduce heat cracks, construction methods (e.g. sequential or skipping construction methods) need to be changed. However, to our knowledge, the existing literature contains little information on the correlation between heat cracks and construction methods. Thus, in this study, the temperature crack index table was suggested based on construction lengths (6 m, 9 m and 18 m), concrete mixtures (Type I cement with FA of 20 % in cement weight, Type IV cement with FA of 10 % in cement weight, and mixture of three different cements), construction seasons (spring or autumn, summer and winter) and construction method (sequential or skipping construction methods). The index table can be easily used corresponding to changes in concrete placing method at the construction site. Also, the correlation of cracking due to sequential or skipping construction methods was derived based on the statistical approaches.

  • PDF

Effects of CNT Additions on Mechanical Properties and Microstructures of Cement (CNT 첨가량에 따른 시멘트의 역학성능 및 미세구조의 영향)

  • Oh, Sungwoo;Oh, Kyeong-seok;Jung, Sang-hwa;Chung, Wonseok;Yoo, Sung-won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.162-168
    • /
    • 2017
  • Carbon nanotube(CNT) is one of the promising construction materials to produce concrete with high strength and durability by adding in the concrete mixtures from various researches. Also, its superior heat conductivity can be one of the options to develop self-heating concrete. In this research, the fundamental study was conducted to investigate mechanical properties and microstructures of cement pastes and mortars by strength tests and porosity measurement with several CNT additions, which were 0 wt%, 0.115 wt%, 0.23 wt% and 0.46 wt% of CNT-cement ratio. Compressive and flexural strength test were conducted at 3, 7 and 28 days, and pore characteristics were investigated by mercury intrusion porosimetry. SEM-EDS and Thermogravimetric analysis(TGA) were conducted to prove the hydration product types and CNT dispersion in the cement matrix. As a result, even though high amount of CNT additions were caused worse performance, mixtures with 0.115 wt% of CNTs developed the similar performance with plain mixture.

Fundamental Physical Properties of Cement Composites Containing Fineness Reject Ash (고분말 리젝트애시를 혼입한 시멘트복합체의 기본물성에 관한 연구)

  • Lee, Kang-Pil;Hong, Man-Gi;Lee, Sang-Soo;Song, Ha-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.363-370
    • /
    • 2011
  • This study considerated reject ash, wastes of coal-fired power plants, to use mineral admixtures for cement. The pozzolan activity selected the fineness of the efficient reject ash through comparison and it compared to the fly ash that are widely used for concrete mixed material. Cement composites was prepared replacing of slag cement by fineness reject ash and fly ash, and properties of cement composites was tested by paste(setting time, fluidity, instrumental analysis) and mortar(compressive strength). Instrumental analysis results showed hydration reaction of fineness reject ash was not different from fly ash, but had more dense micro structures. Results of physical properties showed fineness reject ash shorten setting time, increased compressive strength compared by fly ash. Therefore using fineness reject ash with $6,000cm^2$/g to concrete mineral admixtures or cement composites was might be possible and could contribute to improve properties of concrete.

Fundamental Properties of Concrete Using Liquid Type High Early Strength Agent with Water to Binder Ratio (물결합재비 변화에 따른 액상형 조강제를 사용한 콘크리트의 기초적 특성)

  • Noh, Sang-Kyun;Oh, Sang-Baek;Lee, Gun-Cheol;Lee, Mun-Hwan;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.57-60
    • /
    • 2007
  • This study is to discuss the effect of the liquid type high early strength agent considering early strength, developing strength, and economics of the concrete using admixtures. The powder type high early strength agent does not helpful because the field application is not available such as the problem of mixing process and rack of economics. To make up these subjects, the plain mixture contains the standard type AE water reducing agent, and the types of the agents are the standard type AE water reducing agent(P),liquid type high early strength agent(AD),poly carboxylate high early strength type AE water reducing agent(E1), and naphthalene + melamine high early strength type AE water reducing agent(E2). As the Contents of the agents, E1 and E2 is two types each cases, and P is one type to satisfy the target fluidity and air content, AD is three types as 0.5, 1.0,and 1.5%. In the case that AD is mixed, the fluidity is decreased, but air content is increased. For increasing strength of the early age, using OPC is more effective than FA and BS for increasing the early strength of the concrete, and if the air content is secure as plain, the effect of the developing strength can be increased because the air content is increased about 2% in the case that AD is used.

  • PDF

Recycling Waste Paste from Concrete for Solidifying Agent (콘크리트 폐기물에서 분리된 페이스트를 활용한 고화재 기술개발 기초연구)

  • Mun, Young-Bum;Choi, Hyun-Kuk;Kim, Jae-Young;Lee, Jea-Hyung;Chung, Chul-Woo;Kim, Ji-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.3
    • /
    • pp.269-277
    • /
    • 2017
  • In this work, as a preliminary experimental works, which focuses on utilizing separated pastes from activated (or radioactive) concrete as solidifying agents for radioactive waste immobilization, were performed. It was found that density of hydrated cement paste, which was lower than that of ordinary portland cement, increased as temperature for heat treatment increased. Highest compressive strength was observed with the specimens that was heat treated at $600^{\circ}C$. However, heat treatment over $700^{\circ}C$ showed higher CaO content that caused higher heat of hydration after in contact with water, lows of workability, and lower strength. Based on experimental results, it is suggested that $600^{\circ}C$ heat treatment is more appropriate for waste cement paste to be used as a solidifying agent.

Evaluation of Setting Delay in Mortar Adding Superplasticizer Using Electrical Resistivity Measurement (전기비저항 측정법을 이용한 유동화 모르타르의 응결 지연 현상 평가)

  • Lee, Hanju;Yim, Hong Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.9-15
    • /
    • 2018
  • According to the development and use of self-consolidating concrete in field, interest in material properties of early-age concrete is rising. Setting time with hydration process of cement is one of significant indicator to evaluate the early-age material properties of concrete, various nondestructive methods including penetration resistance measurement have been proposed to estimate setting time. This study performed an experimental approach to evaluate setting time delay in mortar adding superplasticizer using electrical resistivity measurement. For this purpose, total nine types of mortar samples were prepared, and its electrical resistivity was monitoring during 24h after mixing. From the experimental result, rising time of electrical resistivity was used to evaluate setting delay of mortar, and penetration resistance was also measured for comparison. In addition, dynamic elastic modulus and compressive strength of 1day mortar were measured to investigate a possibility the use of electrical resistivity measurement for evaluation of early-age material properties.

Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum (알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성)

  • Hong-Seop Kim;Kyoung-Su Shin;Do-Gyeum Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2024
  • In this study, the mechanical properties of PHC pile concrete using alpha-type hemihydrate gypsum were evaluated. As the replacement ratio of alpha-type hemihydrate gypsum increased, the setting time rapidly accelerated. In particular, when replacement ratio exceeded 20 %, the setting time was shortened due to rapid hydration reaction, making it impossible to secure working time. As the replacement ratio of alpha-type hemihydrate gypsum increased, the ettringite and gypsum peaks tended to increase, and it is believed that the shrinkage of concrete decreased due to the increase in the ettringite peak. At a As the replacement ratio of 5 to 15 % for alpha-type hemihydrate gypsum, the compressive strength increased or was found to be equivalent to that of OPC. But at 20 % substitution, workability deteriorated due to rapid setting, so use of the 5 to 15 % range is considered appropriate.

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide (다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성)

  • Lee, Jong-Young;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.

Setting and Micro-structures of the Cement Pastes Using Sugar-Based Super Retarding Agents (당류계 초지연성 혼화제를 사용한 시멘트 페이스트의 응결 및 미시구조 특성)

  • Jeong, Yeong-Jin;Hyun, Seung-Yong;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.6
    • /
    • pp.703-714
    • /
    • 2023
  • This research conducts a series of tests to investigate the setting retarding properties and strength development in cement pastes incorporating various types and dosages of sugar-based super retarding agents. Six such agents, including Sucrose, Sugar powder, Saccharin, Aspartame, Stevioside, and Mogroside, commercially available, were selected for evaluation. The study also examines the micro-structural properties of these cement pastes. The test mixtures were prepared using a 27.5% water-to-cement ratio and ordinary Portland cement. Micro-structural analyses were conducted using Scanning Electron Microscopy(SEM), X-Ray Diffraction(XRD), and Energy Dispersive Spectroscopy(EDS). The findings reveal that the incorporation of sucrose, sugar powder, and stevioside significantly retards the setting time. Particularly, adding 0.1% sucrose extended the setting time by approximately two-fold compared to the control(Plain) mixture. Most mixtures, barring those with sugar powder and stevioside, exhibited compressive strength comparable to the Plain mixture. Notably, with 0.2% sucrose, strength measurements were not feasible at 1 day, but at 3 days, the strength gains aligned with the Plain mixture. XRD, SEM, and EDS analyses confirmed the hydration delay(set retarding) of C3S due to sucrose, with further quantitative corroboration provided by EDS. SEM was used to verify the presence or absence of hydration products. The study concludes that sucrose, as a sugar-based retarder, offers effective set retarding capabilities and compressive strength development in concrete.

Evaluation of pH and Compressive Strength Development of Alpha-Calcium Sulfate Hemihydrate-based Binder (알파형 반수석고 기반 결합재의 pH 및 강도발현 평가)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.1
    • /
    • pp.59-65
    • /
    • 2016
  • This study examined the compressive strength development and pH values of alpha-calcium sulfate hemihydrate(${\alpha}-CH$)-based binders developed for vegetation concrete with neutral pH between 6~7. Considering cost down and strength enhancement of the prepared binders, the ${\alpha}-CH$ was partially replaced by ground granulated blast furnace slag(GGBS), fly ash(FA), or ordinary Portland cement(OPC) by 25% and 50%. The compressive strength of mortars using 100% ${\alpha}-CH$ was 50% lower than that of 100% OPC mortars. With the increase of the replacement level of GGBS or FA, the compressive strength of ${\alpha}-CH$-based mortars tended to decrease, whereas the pH values were maintained to be 6.5~7.5. The main hydration products of ${\alpha}-CH$-based binders with GGBS or FA were a gypsum($CaSO_4$), whereas portlandite($Ca(OH)_2$) was not observed in such binders. Meanwhile, the pH values of ${\alpha}-CH$-based binders with OPC exceeded 11.5 due to the formation of $Ca(OH)_2$ phase as a hydration product. From the thermogravimetric analysis, the amount of $Ca(OH)_2$ in ${\alpha}-CH$-based binders with OPC was evaluated to be approximately 10% of the cement content.