DOI QR코드

DOI QR Code

The Strength Characteristics of CO2-reducing Cement Mortar using Porous Feldspar and Graphene Oxide

다공성 장석 및 산화그래핀을 적용한 탄소저감형 시멘트 모르타르 강도특성

  • Lee, Jong-Young (Department of Civil and Environmental Engineering, Chung-Ang Univ.) ;
  • Han, Jung-Geun (Department of Civil&Environmental Engineering and Intelligent Energy&Industry, Chung-Ang Univ.)
  • Received : 2021.11.04
  • Accepted : 2021.11.11
  • Published : 2021.12.31

Abstract

In response to the carbon emission reduction trends and the depletion of natural sand caused by the use of cement in construction works, graphene oxide and porous feldspar were applied as countermeasures in this study. By using (3-aminopropyl)trimethoxysilane-functionalized graphene oxide with enhanced bond characteristics, a concrete specimen was prepared with 5% less cement content than that in a standard mortar mix, and the compressive strengths of the specimens were examined. The compressive strengths of the specimen with (3-aminopropyl)trimethoxysilane-functionalized graphene oxide and porous feldspar and the specimen with standard mixing were 26MPa and 28MPa, respectively, showing only a small difference. In addition, both specimens met the compressive strength of cement mortar required for geotechnical structures. It is believed that a reasonable level of compressive strength was maintained in spite of the lower cement content because the high content of pozzolans, namely SiO2 and Al2O3, in the porous feldspar enhanced the reactions with Ca(OH)2 during hydration, the nano-sized graphene surface acted as a reactive surface for the hydration products to react actively, and the strong covalent bonding of the carboxyl functional group increased the bonding strength of the hydration products.

본 연구에서는 건설공사시 시멘트 사용에 따른 탄소배출 저감과 천연모래 고갈에 따른 대응방안으로 산화그래핀 및 다공성 장석을 적용하였다. 산화그래핀은 부착특성을 증가시키기 위해 (3-aminopropyl)trimethoxysilane으로 기능화 시켰으며, 이를 적용하여 표준배합 모르타르 대비 시멘트 함량을 5% 감소시킨 배합조건으로 공시체를 제작하여 압축강도를 평가하였다. 다공성 장석과 기능화된 산화그래핀이 적용된 시편과 표준배합시편의 압축강도는 각각 26MPa, 28MPa로 큰 편차를 보이지 않았으며, 지반구조물에서 요구하는 시멘트 모르타르의 압축강도를 만족하는 것으로 평가되었다. 시멘트 함량감소에도 적정강도를 유지할 수 있는 원인으로는 다공성 장석에 대표적 포졸란 성분인 SiO2와 Al2O3가 다량으로 함유되어 수화과정에서 Ca(OH)2와의 반응을 증가시켰고, 나노크기의 그래핀 표면이 수화생성물이 활발히 반응할 수 있는 반응면으로 작용하였으며, Carboxyl 작용그룹의 강력한 공유결합 특성이 수화물의 결합강도를 증가시켰기 때문에 시멘트 함량을 감소시켰음에도 적정한 압축강도가 유지되었던 것으로 판단된다.

Keywords

Acknowledgement

This research was supported by the MSIT(Ministry of Science and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-2020-2020-0-01655) supervised by the IITP(Institute of Information & Communications Technology Planning & Evaluation) and the National Research Foundation (NRF) of Korea, funded by the Korea government (MSIP) (NRF-2019R1A2C2088962) and the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government (Project Number: 21CTAP-C164339-01).

References

  1. Ahmad, S., Anwar, A., Mohammed, B. S., Wahab, M. bin A. and Ahmad, S. A. (2019), "Strength behavior of concrete by partial replacement of fine aggregate with ceramic powder", Int. J. Recent. Technol. Eng., Vol.8, No.2, pp.5712-5718. https://doi.org/10.35940/ijrte.b3366.078219
  2. ASTM C109/C109M-20b Standard Test(2020), Method for Compressive Strength of Hydraulic Cement Mortars(Using 2-in. or [50mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA.
  3. Chan, L. Y. and Andrawes, B. (2010), "Finite element analysis of carbon nanotube/cement composite with degraded bond strength", Computational Material Science, Vol.47, Issue 4, pp.994-1004. https://doi.org/10.1016/j.commatsci.2009.11.035
  4. Chang, I., Lee, M. and Cho, G. C. (2019), "Global CO2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering", Energies, 12(13), 2567. https://doi.org/10.3390/en12132567
  5. Chang, R., Asatyas1, S., Lkhamsuren1, G., Hirohara1, M. and Mondarte1, E. A. Q., "Suthiwanich, K., Sekine1, T., Hayashi, T.(2018), Water near bioinert self-assembled monolayers", Polymer J., 50, pp. 563-571. https://doi.org/10.1038/s41428-018-0075-1
  6. Chaipanich, A., Nochaiya, T., Wongkeo, W. and Torkittikul, P. (2010), "Compressive strength and microstructure of carbon nanotubes-fly ash cement composites", Mat. Sci. and Engr. : A, Vol.527, Issue 4-5, pp.1063-1067.
  7. Greenhouse Gas Inventory and Research Center/GIR (2021), National Greenhouse Gas. Inventory Report of Korea, GIR, Seoul, Republic of Korea.
  8. Han, J. G., Cho, J. W., Kim, S. W., Park, Y. S. and Lee, J. Y. (2020), "Characteristics of CO2 and Energy-Saving Concrete with Porous Feldspar", Materials, 13, 4204. https://doi.org/10.3390/ma13184204
  9. Kim, W. K., Kim, Y. H., Hong, G., Kim, J. M., Han, J. G. and Lee, J. Y. (2021), "Effect of Hydrogen Nanobubbles on the Mechanical Strength and Watertightness of Cement Mixtures", Materials, 14(8), 1823. https://doi.org/10.3390/ma14081823
  10. Kim, W. K. (2021), Enhancement of Durability and Watertightness of Cement Mixture Using Highly Concentrated Hydrogen Nano-Bubble Water, Master Thesis, Chung-Ang University, Seoul, Republic of Korea, pp.1-5.
  11. Korea Expressway Corporation (2009), Expressway construction Guide Specification, Gyeongsangbuk-do, Republic of Korea.
  12. Korea Land & Housing Corporation (2012), LH Guide Specification, Gyeongsangnam-do, Republic of Korea.
  13. Lee, C. Y. Bae, J. H. Kim, T. Y. Chang, S. H. and Kim, S. Y. (2015), "Using silane-functionalized graphene oxides for enhancing the interfacial bonding strength of carbon/epoxy composites", Composites: Part A, Vol.75, pp.11-17.
  14. Li, V. C., Wu, C., Wang, S., Ogawa, A. and Saito, T. (2002), "Interface tailoring for strainhardening polyvinyl alcoholengineered cementitious composite (PVA-ECC)", ACI Mater. J., Vol.99, pp.463-472.
  15. Lv, S., Qiu, C., Ma, Y. and Zhou, Q. (2013), "Regulation of GO on cement hydration crystals and its toughening effect", Mag. Concr. Res., Vol.65, Issue 20, pp.1246-1254. https://doi.org/10.1680/macr.13.00190
  16. Lv, S., Ting, S., Liu, J. and Zhou, Q. (2014), "Use of graphene oxide nanosheets to regulate the microstructure of hardened cement paste to increase its strength and toughness", Cryst. Eng. Comm. Vol.16, pp.8508-8516. https://doi.org/10.1039/C4CE00684D
  17. Lin, C., Wei, W. and Hu, Y. H. (2016), "Catalytic behavior of graphene oxide for cement hydration process", J. Phys. Chem. Solids., Vol.89, pp.128-133 https://doi.org/10.1016/j.jpcs.2015.11.002
  18. Maalej, M., Quek, S.T., Ahmed, S. F. U., Zhang, J., Lin, V. W. J. and Leong, K. S. (2012), "Review of potential structural applications of hybrid fiber engineered cementitious composites", Constr. Build. Mater., Vol.36, pp.216-227. https://doi.org/10.1016/j.conbuildmat.2012.04.010
  19. Marinkovic, S., Dragas, J., Ignjatovic, I. and Tosic, N. (2017), "Environmental assessment of green concretes for structural use", J. Clean. Prod., Vol.154, pp.633-649. https://doi.org/10.1016/j.jclepro.2017.04.015
  20. Ministry of Land, Infrastructure, and Transport/MOLIT (2014), A Study on the 5th general planning for aggregate supply, MOLIT; Sejong, Republic of Korea.
  21. Ministry of Land, Infrastructure, and Transport/MOLIT (2015), National highway construction Guide Specification, MOLIT; Sejong, Republic of Korea.
  22. Ministry of Land, Infrastructure, and Transport/MOLIT (2016a), Standard Specifications for cut slope construction, MOLIT; Sejong, Republic of Korea.
  23. Ministry of Land, Infrastructure, and Transport/MOLIT (2016b), Standard Specifications for road construction, MOLIT; Sejong, Republic of Korea.
  24. National institute of meteorological sciences/NIMR(2019), Report of global atmosphere watch 2018, pp.9-24, Jeju, Republic of Korea.
  25. Olivier, J.G., Peters, J.A. and Janssens-Maenhout, G. (2012), Trends in global CO2 emissions 2012 report, PBL Netherlands Environmental Assessment Agency, pp. 17.
  26. Pan, Z., He, L., Qiu, L., Korayem, A., Li, G., Zhu, J., Collins, F., Li, D., Duan, W. and Wang, M. (2015), "Mechanical properties and microstructure of a graphene oxide-cement composite", Cem. Concr. Compos., Vol.58, pp.140-147. https://doi.org/10.1016/j.cemconcomp.2015.02.001