• Title/Summary/Keyword: Concrete Crack Depth

Search Result 204, Processing Time 0.033 seconds

Characteristic of Steel Corrosion in Carbonated Concrete

  • You, JeiJun;Ohno, Yoshiteru
    • Corrosion Science and Technology
    • /
    • v.4 no.4
    • /
    • pp.130-135
    • /
    • 2005
  • In this study, accelerated corrosion tests were conducted on concrete specimens with and without accelerated carbonation beforehand for the purpose of elucidating the effects of carbonation, cover depth, and water-cement ratio (W/C) on the reinforcement corrosion. During testing, the corrosion current between the anode steel and cathode stainless steel was measured to continuously monitor the progress of corrosion throughout the test period, thereby investigating the mechanism of reinforcement corrosion and the relationship between corrosion and crack width, as well as other parameters.

Flaw Detection of the Aged Bridge on National Roadway by Impact Echo Testing (충격반향기법을 이용한 국도상 노후교량의 결함검사)

  • 유재열;김기봉;정영수;조성호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.743-748
    • /
    • 1998
  • As nation's infrastructure is getting old, nondestructive evaluation of existing structures and construction quality control are getting important. In this thesis, flaw detection techniques of concrete members with asphalt using impact echo test were introduced. This techniques are based on stress wave propagation. In this field impact echo test, As load is gradually increased, frequency is increased. From this change of frequency through impact echo test, we can detect that the crack of bridge ascends and what the depth of crack is.

  • PDF

A Study on Watertightness Effect of Waterproofing Admixture Mixed Redispersible (재유화형 분말수지계와 규산질계 혼합형 구체방수재의 방수효과에 관한 연구)

  • 김무한;오상근;배기선;박선규;김용로
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.3
    • /
    • pp.39-46
    • /
    • 2000
  • This study is to investigate the watertightness properties of waterproofing admixture mixed redispersible polymer and siliceous powder. Series I deals with change in micro-structure of mortar by waterproofing admixture according to the water/cement ratios of 0.5, 0.6, 0.7 and 0.8 Crystal growth in micro-structure was observed through SEM to estimate on the watertightness effect of it. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. SeriesII deals with watertightness properties of waterproofing admixture on water permeability coefficient, crack restoration capacity and carbonation depth. The result of this study can be summarized as follows. 1) Fluidity of mortar and concrete was increased by adding waterproofing admixture. 2) From observation through SEM. Crystals grew larger and denser in micro-structure as fiberic crystalization. 3) Waterproofing admixture is good watertightness properties in a level of high water/cement ratios and long limit of time. 4) Crack restoration capacity was appeared and durability was progressed by waterproofing admixture.

On the Fracture Behaviour of the Concrete Gravity Dam Subjected to Water Pressure at the Crack Faces (균열면에 수압을 받는 중력식 콘크리트 댐의 파괴거동에 관한 연구)

  • 장희석
    • Computational Structural Engineering
    • /
    • v.9 no.4
    • /
    • pp.189-198
    • /
    • 1996
  • The fracture behaviour of concrete gravity dam mainly due to uplift pressure acting at the crack face was studied. Triangular type and parabolic type distribution of the uplift pressure including uniform type were first considered in case of calculating stress intensity factor(SIF) by the surface integral method. Second, the directions of crack propagation according to the uplift pressure distribution were pursued by FRANC(FRacture ANalysis Code). Third, critical crack lengths according to the uplift pressure distribution under the overflow depth were calculated. The SIF values obtained from the surface integral method were compared with those by FRANC and relatively good agrements could be obtained between both of them. And it could be seen that the direction of crack propagation in case of triangular pressure distribution was a little benter to the dam base than the one by the uniform type. Maximum critical crack lengths under the overflow depth were obtained at about 2/5-1/2 of the dam height.

  • PDF

A Study on the Shear Strength Properties of Reinforced Concrete Beams according to Shear Span-Depth Ratio (전단지간비에 따른 철근콘크리트 보의 전단강도특성에 관한 연구)

  • Park, Jong-Gun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.93-100
    • /
    • 2000
  • The purpose of this study is to investigate the shear behavior of reinforced concrete beams according to small shear span-depth ratio between a/d=1.5, 2.8, 3.6. In general, shear strength of reinforced concrete beams is dependent on the compressive strength of concrete the longitudinal steel ratio, the shear span-depth ratio and shear reinforcement. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns, fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The test results on shear strength were compared with results obtained by the formulas of ACI code 318-95. The shear strength of reinforced concrete beams exceeded those predicted following present ACI code 318-95(11-6).

  • PDF

Application and Improvement of Surface Wave Transmission Technique for Measuring the Crack Depth in Reinforced Concrete Members (철근 콘크리트 부재의 균열 깊이 측정을 위한 표면파 투과기법의 적용 및 개선)

  • Min, Ji-Young;Kim, Jae-Hong;Kwak, Hyo-Gyoung;Yun, Chung-Bang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.164-176
    • /
    • 2008
  • In order to assess the existing infrastructures, it is required to measure the crack depth of concrete members. This paper considers the surface wave transmission technique to measure the crack depth. In special, we demonstrate the effect of reinforced bar on surface wave propagation and conclude that the surface wave transmission technique has only the minor error by the reinforced bar. In addition, we propose and validate the optimal window size for eliminating various reflection waves from the boundary of members.

Fracture Behavior and Crack Growth of Concrete by The Nonlinear Fracture Mechanics (비선형 파괴역학에 의한 콘크리트의 파괴거동과 균열성장에 관한 연구)

  • 배주성;나의균
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.2
    • /
    • pp.81-92
    • /
    • 1990
  • Concrete, a mixed material, has heterogeniety, anisotrophy and nonlinearity. Therefore, in its 'racture analysis, it is more reasonable to evaluate its fracture toughness by applying the concept of 'racture mechanics rather than the strength concept. Up to the present the concepts of fracture mechanics which were applied to concrete have been divided into two main classes. The one is the concept of linear elastic fracture mechanics and the other is the concept of elastic-plastic fracture mechanics. But it has been pointed out that there are many problems and irrationalities in applying the concept of linear elastic fracture mechanics to concrete. In this study, the J -integral method and the COD method mainly used in the analysis of nonlinear fracture mechanics, were introduced and the three point bending test was carried out for investigating the effects of the variation of the maximum aggregate size and notch depth on the fracture behavior and the crack growth of concrete, and the relationships of fracture energy and crack opening displacement. According to the results of this study the more the maximum aggregate size and the notch depth increased, the more the nonlinearity of load-deflection behavior was remarkable. The increase of the coarse aggregate size created the more ductility of concrete. Thus concrete showed the more stable fracture. As for the path of the crack growth, the more the coarse aggregate size increased, the more it was irregulary deviated from the straight line but it was not almost affected by the variation of the notch depth. Also, the fracture energy increased according as the coarse aggregate size increased and the notch depth decreased.

A Study on Survey of Carbonation for Sound, Cracked, and Joint Concrete in RC Column in Metropolitan City (국내 도심지 콘크리트 교각 취약부의 탄산화 조사에 대한 연구)

  • Kwon, Seung Jun;Park, Sang Sun;Nam, Sang Hyuk;Cho, Ho Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.116-122
    • /
    • 2007
  • The concrete structures in Metropolitan city are usually exposed to carbonation and corrosion of embedded steel occurs due to the carbonation. In inspection and diagnosis of concrete structures, carbonation depth in sound concrete is mainly evaluated and service life for concrete structure is predicted based on the result. Generally, however, mass concrete structures such as columns have construction joint for suitable placing and also have cracks in early-age. In this study, carbonation depth in RC columns used for 20 years in metropolitan city is evaluated and also analyzed by considering the local conditions like sound, cracked, and joint area. The carbonation depth in cracked and joint area is more rapid than that in sound area, and it is thought to be more desirable to consider this effect in concrete structures with small cover depth. Furthermore, the technique for carbonation prediction in cracked concrete is derived in terms of crack width and the results from this technique are verified by comparing those from previous research.

Residual static strength of cracked concrete-filled circular steel tubular (CFCST) T-joint

  • Cui, M.J.;Shao, Y.B.
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1045-1062
    • /
    • 2015
  • Concrete-filled circular t steel tubular joints (CFSTJs) in practice are frequently subjected to fluctuated loadings caused by wind, earthquake and so on. As fatigue crack is sensitive to such cyclic loadings, assessment on performance of CFSTJs with crack-like defect attracts more concerns because both high stress concentration at the brace/chord intersection and welding residual stresses along weld toe cause the materials in the region around the intersection to be more brittle. Once crack initiates and propagates along the weld toe, tri-axial stresses in high gradient around the crack front exist, which may bring brittle fracture failure. Additionally, the stiffness and the load carrying capacity of the CFSTJs with crack may decrease due to the weakened connection at the intersection. To study the behaviour of CFSTJs with initial crack, experimental tests have been carried out on three full-scale CFCST T-joints with same configuration. The three specimens include one uncracked joint and two corresponding cracked joints. Load-displacement and load-deformation curves, failure mode and crack propagation are obtained from the experiment measurement. According to the experimental results, it can be found that he load carrying capacity of the cracked joints is decreased by more than 10% compared with the uncracked joint. The effect of crack depth on the load carrying capacity of CFCST T-joints seems to be slight. The failure mode of the cracked CFCST T-joints represents as plastic yielding rather than brittle fracture through experimental observation.

A Study on the Load Carrying Capacity of the RC-T Bridge considering depth of crack (RC-T 교량의 균열을 고려한 내하력평가 연구)

  • Shim, Jae-Soo;Kim, Chun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.141-146
    • /
    • 1999
  • Recently, many existing bridges has been evaluated for maintenance and protection of collapse. In this study, field measurement according to truck loads tests on the reinforce concrete T beam bridge was carried out. Comparing the results of load test and structural analysis using the moments of inertia of gross section, crack section and effective section, and the moments of inertia of section considering depth of crack, it is conclude that the evaluation of load carrying capacity using the stress modification factor from structural analysis using the moments of inertia of gross section is more rational than using the other moments of inertia of sections.

  • PDF