• 제목/요약/키워드: Concrete Columns

검색결과 1,793건 처리시간 0.022초

탄소섬유쉬트로 횡구속된 RC기둥의 압축거동 (Axial Compressive Behavior of R/C Columns Confined with Carbon Fiber Sheets)

  • 신성우;이광수;심성택;송민성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.727-732
    • /
    • 2001
  • External Confinement of concrete in CFS enhances strength and ductility of concrete columns. This paper presents the test results on the study of reinforced concrete columns strengthened with carbon fiber sheets. The purpose of this research is to evaluate the CFS confinement characteristics of square reinforced concrete columns and the CFS efficiency. The tests were performed with different lateral reinforcement ratios, CFS reinforcement ratios and concrete strength. Test results were characterized according to maximum loads and lateral strain of CFS.

  • PDF

Experimental study on reinforced high-strength concrete short columns confined with AFRP sheets

  • Wu, Han-Liang;Wang, Yuan-Feng
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.501-516
    • /
    • 2010
  • This paper is aiming to study the performances of reinforced high-strength concrete (HSC) short columns confined with aramid fibre-reinforced polymer (AFRP) sheets. An experimental program, which involved 45 confined columns and nine unconfined columns, was carried out in this study. All the columns were circular in cross section and tested under axial compressive load. The considered parameters included the concrete strength, amount of AFRP layers, and ratio of hoop reinforcements. Based on the experimental results, a prediction model for the axial stress-strain curves of the confined columns was proposed. It was observed from the experiment that there was a great increment in the compressive strength of the columns when the amount of AFRP layers increases, similar as the ultimate strain. However, these increments were reduced as the concrete strength increasing. Comparisons with other existing prediction models present that the proposed model can provide more accurate predictions.

COMPRESSIVE STRENGH OF FRP-CONFINED CONCRETE COLUMNS UNDER THE ECCENTRIC LOADS

  • H.R. Salehian;M.R. Esfahani
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.978-982
    • /
    • 2009
  • In recent years, due to some excellent properties of fiber reinforced polymer (FRP) composites, the use of FRP sheets for strengthening the weak concrete columns have become increasingly popular. Axial loading is the basic assumption in most of the models that are presented for estimating the compression strength of confined concrete columns. However a large number of weak concrete columns in the bending frames are under the combination of both axial and flexural loads. This paper presents the results of an experimental study on the effects of eccentricity of load on the compressive strength of concrete columns confined by FRP sheets. This research shows that the eccentricity of compression load affects decreasingly the performance of confining FRP jacket in confined columns.

  • PDF

기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구 (Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns)

  • 장원석;민창식
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Uni-axial behaviour of normal-strength concrete-filled-steel-tube columns with external confinement

  • Ho, J.C.M.;Luo, L.
    • Earthquakes and Structures
    • /
    • 제3권6호
    • /
    • pp.889-910
    • /
    • 2012
  • Because of the heavy demand of confining steel to restore the column ductility in seismic regions, it is more efficient to confine these columns by hollow steel tube to form concrete-filled-steel-tube (CFST) column. Compared with transverse reinforcing steel, steel tube provides a stronger and more uniform confining pressure to the concrete core, and reduces the steel congestion problem for better concrete placing quality. However, a major shortcoming of CFST columns is the imperfect steel-concrete interface bonding occurred at the elastic stage as steel dilates more than concrete in compression. This adversely affects the confining effect and decrease the elastic modulus. To resolve the problem, it is proposed in this study to use external steel confinement in the forms of rings and ties to restrict the dilation of steel tube. For verification, a series of uni-axial compression test was performed on some CFST columns with external steel rings and ties. From the results, it was found that: (1) Both rings and ties improved the stiffness of the CFST columns and (2) the rings improve significantly the axial strength of the CFST columns while the ties did not improve the axial strength. Lastly, a theoretical model for predicting the axial strength of confined CFST columns will be developed.

철근비 변화에 따른 철근콘크리트 기둥의 거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Reinforced Concrete Columns Subjected Longitudinal Steel Ratio.)

  • 조성찬;장정수;김광석;박진희;김윤용;한상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.284-292
    • /
    • 1995
  • This paper is on experimental study on the behavior of reinforced concrete columns subjected to longitudinal steel ratio To investigate the effects of concrete strength and longitedinal steel ratio on the behavior of reinforced concrete columns. a series of tests were carried out for thirty-six tied reinforced concrete columns with a 100mm square cross section and three slendemess ratio of 15, 30 and 50. And To study and illustrate the change of the ultimate loads and that of displacements, two different concrete strength of 180,26kfg/$\textrm{cm}^2$, 819,36kfg/$\textrm{cm}^2$ and five different longitudinal steel ratio of 0.5, 1.0, 4.0, 5.7 and 10.3% were used. The boundary conditions at the ends were both hinged and the end eccentricities (17mm) were equal and of the same sign. While the ultimate load capacity of high-strength concrete column was much increased when the columns were short, that was not when the columns were slender. The effect of longitudinal steel ratio on the increased of ultimate load of column was more evident for slender columns than for short ones and the ultimate of longitudinal steel ratio were more pronounced with increasing concrete strength. The more inserted the longitudinal steel, the more increased the ultimate load, but the superabundance of longitudinal steel ratio over the limitation of maximum steel ratio in ACI code was used, it was showed that the ultimate load was rather decreased.

  • PDF

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • 제34권6호
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.

Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns

  • Pons, David;Espinos, Ana;Albero, Vicente;Romero, Manuel L.
    • Steel and Composite Structures
    • /
    • 제26권6호
    • /
    • pp.705-717
    • /
    • 2018
  • This paper presents a numerical investigation on the mechanical performance of concrete-filled dual steel tubular columns of circular section subjected to concentric axial load. A three-dimensional numerical model is developed and validated against a series of experimental tests. A good agreement is obtained between the experimental and numerical results, both in the peak load value and in the ascending and descending branches of the load-displacement curves. By means of the numerical model, a parametric study is carried out to investigate the influence of the main parameters that determine the axial capacity of double-tube columns, such as the member slenderness, inner and outer steel tube thicknesses and the concrete grade - of both the outer concrete ring and inner core -, including ultra-high strength concrete. A total number of 163 numerical simulations are carried out, by combining the different parameters. Specific indexes are defined (Strength Index, Concrete-Steel Contribution Ratio, Inner Concrete Contribution Ratio) to help rating the relative mechanical performance of dual steel tubular columns as compared to conventional concrete-filled steel tubular columns, and practical design recommendations are subsequently given.

Behavior and calculation on concrete-filled steel CHS (Circular Hollow Section) beam-columns

  • Han, Lin-Hai;Yao, Guo-Huang;Zhao, Xiao-Ling
    • Steel and Composite Structures
    • /
    • 제4권3호
    • /
    • pp.169-188
    • /
    • 2004
  • A mechanics model is developed in this paper for concrete-filled steel CHS (circular hollow section) beam-columns. A unified theory is described where a confinement factor (${\xi}$) is introduced to describe the composite action between the steel tube and the filled concrete. The predicted load versus deformation relationship is in good agreement with test results. The theoretical model was used to investigate the influence of important parameters that determine the ultimate strength of concrete-filled steel CHS beam-columns. The parametric and experimental studies provide information for the development of formulas for the calculation of the ultimate strength of the composite beam-columns. Comparisons are made with predicted beam-columns strengths using the existing codes, such as LRFD-AISC-1999, AIJ-1997, BS5400-1979 and EC4-1994.

일정 및 변동 축력을 받는 철근콘크리트 기둥의 내진성능 평가 (Seismic Performance Evaluation of Reinforced Concrete Columns Under Constant and Varying Axial Forces)

  • 이도형
    • 한국지진공학회논문집
    • /
    • 제28권1호
    • /
    • pp.59-65
    • /
    • 2024
  • This paper describes the seismic performance evaluation of reinforced concrete bridge columns under constant and varying axial forces. For this purpose, nine identical circular reinforced concrete columns were designed seismically by KIBSE (2021) and KCI (2021). A comparison of lateral forces with theoretical strength shows that the safety factor for columns under varying axial forces is less marginal than those under constant axial forces. In addition, columns under varying axial forces exhibit significant fluctuations in the hysteretic response due to continuously varying axial forces. This is particularly prominent when many varying axial force cycles within a specific lateral loading cycle increase. Moreover, the displacement ductility of columns under varying axial forces does not meet the code-specified required ductility in the range of varying axial forces. All varying axial forces affect columns' strength, stiffness, and displacement ductility. Therefore, axial force variation needs to be considered in the lateral strength evaluation of reinforced concrete bridge columns.