• Title/Summary/Keyword: Concentric Pipe

Search Result 32, Processing Time 0.029 seconds

A Study on the Thermal Performance of Concentric Annular Heat Pipes (동심형 히트파이프의 열성능에 관한 연구)

  • Kim, D.H.;Park, S.Y.;Boo, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1412-1417
    • /
    • 2004
  • Concentric annular heat pipes having the length of 200 mm and the outside diameter of 25.4 mm were manufactured and tested. The inside diameters of the heat pipes were 11.3 mm and 8.1 mm and the material of the container was copper. To compare with thermal performances between the concentric annular heat pipe and a copper block with same shape, start-up and isothermal performance were tested. In the result, the start-up of the concentric annular heat pipe was influenced by the start-up of their heat source. The concentric annular heat pipe reached at steady state faster then the same shape of copper block. The maximum wall temperature difference of the concentric annular heat pipe on whole surface was $4.6^{\circ}C$, and the case of the copper block was $16.5^{\circ}C$.

  • PDF

DNS of turbulent concentric annular pipe flow (동심 환형관 내의 난류유동의 직접수치모사)

  • Chung, Seo-Yoon;Rhee, Gwang-Hoon;Sung, Hyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.461-466
    • /
    • 2000
  • Direct numerical simulations (DNS) is carried out to study fully-developed turbulent concentric annular pipe flow with two radius ratios at $Re_{Dh}\;=\;8900$. In case of $R_1/R_2\;=\;0.5$, the present result for the mean flow is in good agreement with the previous experimental data. Because of the transverse curvature effects, the distributions of mean flow and turbulent intensities are asymmetric in contrast to those of other fully-developed flows (channel and pipe flow). From the distributions of skewness of radial velocity fluctuations, it co be identified that all of the characteristics of channel, pipe and turbulent flow on a cylinder in axial flow can be appeared in concentric annular pipe flow.

  • PDF

Evaluation of Flow Characteristics in Water Supply Pipes Shielding Electromagnetic Pulse of 100 dB with Concentric and Eccentric Reducers (Concentric Reducer와 Eccentric Reducer를 사용한 EMP 차폐 100dB급 급수관의 유동특성 평가)

  • Pang, Seung-Ki;Ahn, Hye-Rin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In this paper, the flow characteristics of water in the water supply pipes of a WBC array were evaluated. We simulated the flow velocities and pressures for a standard pipe, an expansion pipe with a concentric reducer, and an expansion pipe with an eccentric reducer using computational fluid dynamics. In the case of the standard pipe, when the inlet flow velocities were 0.5 m/s and 2.0 m/s, the maximum flow velocities at the center of the WBC array were 0.54 m/s and 2.74 m/s, respectively, which were the greatest values among those of all the pipe models considered. In the case of the expansion pipe, the maximum flow velocities at the center of the WBC array were almost the same under the same conditions regardless of the type of reducer. The pressure losses in the pipe due to the concentric and eccentric reducers were found to be (165.09 ${\times}$ inlet $velocity^{1.6677}$) and (210.98 ${\times}$ inlet $velocity^{1.6478}$), respectively. The coefficient of determination at this time was greater than 0.99 and was the same for both the models. As a simulation result, it was found that in order to reduce the pressure loss when pipe with WBC array is connected with a conventional pipe, diameter of the pipe with WBC array at that section should be enlarged by one step, and then connected to the conventional pipe with a concentric reducer.

A Study on the Characteristics of Concentric Pipe Resonators (동심관형 공명기의 음향학적 특성 연구)

  • 전영두;김양한
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Although the fundamental resonance frequency of a Helmholts resonator is mainly determined by the volume of the resonator and the size of the hole, it is also affected by the position of the hole and the shape of the resonator. In this study, the inertial end corrections and the fundamental resonance frequencies of concentric pipe resonators are estimated for various positions of the hole and shapes of the resonator by using the 3-D analysis. For an effective noise reduction in concentric pipe resonators with several holes, an optimal spatial hole-distribution is proposed based on the calculated transmission loss for various hole-distributions and sizes of holes.

  • PDF

Analysis of Turbulent Heat Transfer in a Concentric Annular Pipe with Artificial Roughness (人工조도 가 있는 二重同心圓管 의 亂流 熱傳達 解析)

  • 홍진관;이기만;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.301-312
    • /
    • 1983
  • Experimental results for the variation of the flow characteristics and heat transfer coefficients in the entrance region of concentric annular pipe with artificial roughness are compared with the theoretical results by numerical analysis. In the experiments, velocity profiles, pressure gradients and heat transfer coefficients were measured with variation of the Reynolds number for the constant ratio of pitch to height at the hydrodynamic entry region. Wall temperature of inner heated pipe with constant heat flux was measured at thermal entry region after the hydrodynamically fully developed region of flow. Experimental data agree well with numerical predictions. Both results show that turbulent flow of annular pipe with artificial roughness is fully developed thermally much faster than that of smooth pipe. Nusselt number of annular pipe with roughness is much higher than that of smooth pipe. However the ratios of Nusselt number of annular pipe with artificial roughness to that of smooth pipe does not vary with Reynolds number.

A Study on the Heat Transfer Characteristics of Magnetic Fluids in Concentric Double Pipe Annuli (이중원관내 자성유체의 열전달 특성에 관한 연구)

  • Park, J.W.;Park, G.T.;Seo, L.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1657-1662
    • /
    • 2003
  • In this study, to research characteristics of heat flow of magnetic fluid, it's studied about numerical and experimental method of natural convections change and characteristics of heat transfer in Concentric double pipe annuli as analysis model. In the result, natural convection of magnetic fluid is controlled by direction and strength of the impressed magnetic field. Especially, according to average Nusselt number, heat transfer is the smallest on the balancing point between body force and buoyancy.

  • PDF

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

An Experimental Study for Apply Solar System on Thermal Performance of Heat Pipe Type Solar Collector using a Glass Concentric Evacuated Tube in a Summer (하절기 태양열 시스템 적용을 위한 이중진공관 히트파이프형 집열기 열성능의 실험적 연구)

  • Kang, C.H.;Bae, C.H.;Hong, J.K.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1646-1651
    • /
    • 2004
  • This paper has been carried out to find the thermal efficiency and operating characteristics of heatpipe type solar collector using a glass concentric evacuated tube(CETC) during summer. In an experiment the flow rate of water in collector are 1.5l/min. Collector efficiency is $50{\sim}60%$ during time. The solar radiation appeared in a clear day is efficiency high. Efficiency curve fitted first order polynomial show that $F_{R}$$({\tau}{\alpha})$ and $F_{R}U_{L}$=1.316 is 0.601 and 1.316 respectively.

  • PDF

Study on Simulation of Cooling Water through Concentric Double Pipe Heat Exchanger (Concentric Double Pipe 열교환기에서 냉각수 급랭 현상의 모사에 대한 연구)

  • ANCHEOL CHOI;SEONGWOO LEE;IK HO SHIN;SUNGWOONG CHOI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.741-747
    • /
    • 2023
  • In this study, the heat transfer characteristics were numerically analyzed to investigate the possibility of utilizing cooling water using liquid nitrogen. From the study, as the mass flow rate of the hot fluid increased, the heat transfer rate increased by 8.9-81.7%. And lowering the inlet temperature of the hot fluid resulted in increase in the heat transfer rate by 33.8-71.5%. As for the filling level of liquid nitrogen, as higher filling level led to a decrease in the outlet temperature and an increase in the overall heat transfer coefficient.

Thermal Performance of the Bubble Jet Loop Heat Pipe Using Eccentric Heater in Evaporating Section (증발부에 편심 가열부를 사용한 버블젯 루프 히트파이프의 열성능)

  • Kim, Jong-Soo;Kim, Sung-Bok
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.12
    • /
    • pp.652-658
    • /
    • 2015
  • The Bubble Jet Loop Heat Pipe (BJLHP) is designed to operate in the horizontal orientation. The motion of the bubble generated by boiling working fluid on a heater surface in the evaporating section of the BJLHP helps the working fluid transfer heat to the condensing portion. In this study, we changed the position of the heater in the evaporating section from concentric to eccentric. The concentric heater is located at the center of the tube in the evaporating part, and the eccentric heater is located at the bottom of the inner surface of the same tube. We used R-134a as the working fluid, and the charging ratio was 50%vol. We measured the temperatures of the evaporating and condensing sections by changing the input electric power from 50 W to 200 W, measuring every 50 W. The results of the experiment show that the effective thermal conductivity of BJLHP using an eccentric heater is four times higher than the BJLHP obtained using a concentric heater. Additionally, we conducted a visualization experiment on the evaporating portion of BJLHP to determine why the effective thermal conductivity was higher. The working fluid was water, and we took pictures of the flow visualization for BJLHP. Nucleate boiling with the eccentric heater was more intense and generated more bubbles. Therefore, the eccentric heater was more saturated by the liquefied working fluid.