• Title/Summary/Keyword: Concentration of combustion gas

Search Result 490, Processing Time 0.022 seconds

The Study of Waste Treatment using Advanced Oxygen Enriched Combustion System (산소부하 연소 시스템을 이용한 폐기물 열처리에 관한 연구)

  • Lee, Keon-Joo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.231-239
    • /
    • 2003
  • In this study, the waste of landfill was treated using advanced enriched oxygen combustion system. The oxygen concentration of this study was 21%, 25%, 30% and 40% and the operating capacity was 200 g/min and the residence time was 10 minutes. As increased the oxygen concentration of combustion air. temperature of the incinerator was increased and the temperature was increased rapidly when the oxygen concentration was 30%. As increased the oxygen concentration, the NOx (ppm) of flue gas increase d for thermal NOx, however the CO (ppm) of flue gas decreased according to the increase of combustion efficiency . The optimum operation condition of incineration was obtained when the oxygen concentration is 30%${\sim}$40%. The unburned carbon of ash decreased from 10% to 4% when the oxygen concentration was increased from 21% to 30%, therefore the high combustion efficiency can be obtained if used the oxygen enriched combustion system.

  • PDF

Premixed Combustion Characteristics of Coal Gasification Fuel in Constant Volume Combustion Chamber (석탄가스화 연료의 정적 예혼합 연소특성)

  • Kim Tae-Kwon;Jang Jun-Young
    • Journal of Environmental Science International
    • /
    • v.15 no.6
    • /
    • pp.601-606
    • /
    • 2006
  • The coal gasification fuel is important to replace petroleum fuel. Also they have many benefits for reducing the air pollution. Measurements on the combustion characteristics of synthetic gas from coal gasification have been conducted as compared with LPG in constant volume combustion chamber. The fuel is low caloric synthetic gas containing carbon monoxide 30%, hydrogen 20%, carbon dioxide 5%, and nitrogen 45%. To elucidate the combustion characteristics of the coal gasification fuel, the combustion pressures, combustion durations, and pollutants(NOx, $CO_2$, CO) are measured with equivalence ratios($\phi$), and initial pressures of fuel-air mixture in constant volume chamber. In the case of the coal gasification fuel, maximum combustion pressure and NOx concentration are lower rather than LPG fuel. However CO and $CO_2$ emission concentration are similar to that of LPG fuel.

A Study on Combustion & Flue Gas Characteristics of Coal at Pressurized Fluidized Bed Combustor (가압유동층연소로에서 석탄의 연소 및 배가스특성 연구)

  • Han, Keun-Hee;Oh, Dong-Jin;Ryu, Jung-In;Jin, Gyoung-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.677-686
    • /
    • 2000
  • The characteristics of combustion and of emissions in pressurized fluidized bed combustor are investigated. The pressure of the combustor is fixed at 6 atm, and the combustion temperatures are set to 850, 900, and $950^{\circ}C$. The gas velocities are 0.9, 1.1, and 1.3 m/s. The excess air ratio is varied from 5 to 35%. The coal used in the experiment is Shenhwa coal in China. All experiments are executed at 2m bed height. Consequently, NOx & $N_2O$ concentration in the flue gas is increased with incresing excess air ratio but $SO_2$ concentration is decreased with incresing excess air ratio. CO concentration is maintained below 100ppm at over 15% of excess air ratio.

Development and Application Effect of Gas Concentration Measure Experiment for the Improvement of Elementary School Teachers' Concept on Combustion (초등교사의 연소 개념 향상을 위한 기체 농도 측정 실험 개발 및 적용 효과)

  • Kim, Eun-Young;Kim, Youngshin;Shin, Ae-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.296-307
    • /
    • 2015
  • The purposes of this study were to develop the experiment for gas concentration measure during combustion of a candle and to investigate the application effect of the experiment. For this study, 15 elementary school teachers were selected by considering their gender, career, 6th grade science teaching experience, and 6th grade science teaching experience according to 2007 revised s cience curriculum. The experiment using MBL is designed to confirm gas concentrations visually during the combustion of a candle which burns in an acrylic container. The experiment method is as follows. 1) Make two sets of holes in the container and then insert oxygen sensors and carbon dioxide sensors in the holes. 2) Burn a candle in the container and observe the changes in the burning of the candle. The experiment has checked oxygen concentration and carbon dioxide concentration in real-time and displays gas concentration changes by graphs. The results of the application effect of the experiment are as follows. Most elementary school teachers who had not had scientific concepts on combustion got acquainted with scientific concepts about ‘the reason why a candle is blown out when it is covered with a bottle’, and ‘the concentrations of oxygen and carbon dioxide before and after combustion’. In addition, about half of elementary school teachers got acquainted with scientific concepts about ‘the definition of combustion’, and ‘distribution of carbon dioxide during combustion’. Thus, the experiment to measure gas concentrations during combustion is helpful to improve elementary school teachers’ concepts on combustion.

An Experimental Study on the Characteristics of Oxygen Combustion of Pulverized Coal and the $NO_x$ Formation using TGA/DSC and DTF (TGA/DSC, DTF를 이용한 미분탄의 산소 연소 및 $NO_x$ 배출 특성에 관한 실험적 연구)

  • Lee, Dae-Keun;Seo, Dong-Myung;Noh, Dong-Soon;Ko, Chang-Bog
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.54-59
    • /
    • 2007
  • In a view of capturing $CO_2$ as a greenhouse gas, an experimental study was conducted on the combustion characteristics of pulverized coal in $O_2$/$CO_2$ environment using TGA/DSC and DTF facilities. The effects of gas composition and concentration on the processes of devolatilization and char burning experienced by coal particles in combustion furnace and on the concentration of products such as $CO_2$, CO and $NO_x$ were observed using TGA/DSC and DTF respectively. As results, it were found that the rate of devolitilation is nearly independent on the $O_2$ concentration if it is over 20% but the char burning rate is a sensitive function of $O_2$ percent, and the two rates can be controlled by $O_2$ concentration in order to be similar with those of air combustion case. It was also found that high concentration $CO_2$ can be captured by oxy-coal combustion and high concentration of CO and low value of $NO_x$ are exhausted in that case. Additionally, NO reducing reaction by CO with char as catalyst was observed and a meaningful results were obtained.

  • PDF

A Study on Toxicity Bio-markers of a Mouse using Combustion Gas SO2 generated from Fire (마우스(mouse)를 이용한 건축물 마감재료 연소가스 SO2의 독성생체지표 연구)

  • Rie, Dong-Ho;Cho, Nam-Wook;Choi, Soon-Young
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • This study was carried out to observe the impacts of a mouse's inhalation of toxic gas SO2 generated from combustion on its organs by different concentrations. As for research methods: First, after concentrations of SO2 generation from combustion had been set to three: low (10.4 ppm), middle (24.9 ppm) and high (122 ppm) through Gas Toxicity Testing Method (KS F 2271) and SO2 combustion gas was exposed to eight mice in each concentration. Five mice that were able to move based on LD50, a criterion, which sets the down time of a mouse's average behaviors to over 9 minutes, were randomly selected in each concentration, and they were set up as the subjects of the study on toxicity bio-markers. Second, tissues were taken from heart, liver, lungs, spleen and the thymus gland of the mice selected in each concentration and a pathological examination of them was carried out. As a result, microvascular congestion appeared in the heart, and cell necrosis, cortex congestion and tubule medulla congestion, etc. in each concentration were observed in addition to vascular congestion in liver, lungs, spleen and the thymus gland. Also, it was found that the higher the concentrations of SO2 exposure is, the greater, the changes in the organs get. Through this study, SO2 of various toxic gases generated from fire turned out to affect the tissues of each organ of a mouse, it is expected that the toxic gases may greatly affect human body in case of actual fire, and this study is evaluated as having a significance as a basic data on inhalation toxicity assessment of toxic substances generated in combustion.

The study of combustion gas characteristic by incinerator operation condition. (소각로 운영조건에 따른 연소배가스 특성 연구)

  • Lee, Keon-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.1
    • /
    • pp.66-72
    • /
    • 2010
  • This study was done to analyze the condition of combustion exhaust gas that is produced according to incinerator operating condition in A area Kyonggido. The boiler exhaust gas temperature, the oxygen concentration of boiler, the outgassing temperature of Semi Drying Sorber(SDS), the temperature of catalytic reactor, the concentration of NOx, SOx, CO, Hcl and Dust were investigated by change the temperature of incinerator. The concentration of SOx, CO, HCL and DUST were below 5 ppm as increase the temperature of incinerator however the concentration of NOx was increased from 40 ppm to 70 ppm as increase the temperature of incinerator. The boiler exhaust gas temperature and the temperature of catalytic reactor were not changed however the oxygen concentration of boiler was decreased gradually as increase the temperature of incinerator.

The Effects of Exhaust Gas Recirculation on Premixed Combustion System (배기가스 재순환 방식이 예혼합 연소시스템에 미치는 영향)

  • Yu, Byeonghun;Lee, Seungro;Kum, Sung-Min;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.1-3
    • /
    • 2013
  • The premixed combustion system applying exhaust gas recirculation was investigated to achieve the low pollutant emission and the high thermal efficiency. In this study, it was studied the effects of EGR on the thermal efficiency, $NO_x$ and CO emissions with various EGR ratios and equivalence ratios. As results, when equivalence ratio was increased, thermal efficiency increased and $NO_x$ and CO concentration increased. When EGR was applied, $NO_x$ and CO concentration decreased and thermal efficiency increased. Especially, in the case of 15% of EGR ratio at 0.85 of equivalence ratio, $NO_x$ and CO concentration will be a smaller than these of a current operating condition of the boiler and thermal efficiency was about 1.7% higher.

  • PDF

Effect of Nitrogen and Carbon Dioxide on DME Homogeneous Charge Compression Ignition Engine (DME 예혼합 압축착화 엔진에서 질소와 이산화탄소의 영향)

  • Jang, Jin-Young;Bae, Choong-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.5
    • /
    • pp.171-178
    • /
    • 2008
  • The combustion and exhaust emission characteristics were investigated in an DME fueled HCCI engine. Carbon dioxide, nitrogen and mixed gas, which was composed of carbon dioxide and nitrogen, were used as control parameters of combustion and exhaust emission. As the oxygen concentration in induction air, which was occurred by carbon dioxide, nitrogen and mixed gas, was reduced, the start of auto-ignition was retarded and the burn duration was extended due to obstruction of combustion and reduction of combustion temperature. Due to these fact, indicated mean effective pressure was increased and indicated combustion efficiency was decreased by carbon dioxide, nitrogen and mixed gas. In case of exhaust emission, hydrocarbon and carbon monoxide was increased by reduction of oxygen concentration in induction air. Especially, partial burning was appeared at lower than about 18% of oxygen concentration by supplying carbon dioxide. However it was overcome by intake air heating.

Experiment on the Characteristics of Jet Diffusion Flames with High Temperature Air Combustion (고온공기를 이용한 제트확산화염의 연소특성에 관한 실험)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.359-364
    • /
    • 2004
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of recirculated exhaust gases, such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions from the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and NO$_x$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though NO$_x$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low NO$_x$ emission because it is operated in low oxygen concentration condition by the high exhaust gas recirculation.