• 제목/요약/키워드: Concentration Loads

검색결과 360건 처리시간 0.031초

시스템에어컨과 환기시스템 설치 강의실에서 냉방시 열쾌적성 및 실내공기질 연구 (Study on Thermal Comfort and Indoor Air Quality in the Classroom with System Air-conditioner and Ventilation System for Cooling Loads)

  • 노광철;장재수;오명도
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.57-66
    • /
    • 2006
  • The experimental and the numerical study was performed on the comparison of thermal comfort(TC) and indoor air quality(IAQ) in the lecture room for cooling loads when the operating conditions are changed. PMV value and $CO_2$ concentration of the lecture room were measured and compared with the numerical results. The numerical results showed a good agreement with the experimental one and then the numerical tool was used to analyze thermal comfort and IAQ for a couple of operating conditions. As a result it was found that the increment of the discharge angle of system air-conditioner makes TC uniformity worse, but rarely affects IAQ. Also TC and IAQ were hardly affected by the variation of the discharge airflow. Finally it turned out that TC is merely affected by the increment of the ventilation airflow, but the average $CO_2$ concentration can be satisfied with Japanese IAQ standards of classrooms when the ventilation airflow is more than $800m^3/h$ in this study.

HSPF 모형을 이용한 안양천 유역의 물순환 건전화 대안기술 효과분석 (Effectiveness Analysis of Alternatives to Rehabilitate the Distorted hydrologic Cycle in the Anyangcheon Watershed using HSPF)

  • 정은성;이준석;이길성;김상욱;김경태
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.973-984
    • /
    • 2007
  • This study developed and calculated alternative evaluation index (AEI) from the effectiveness analyses of alternatives for rehabilitation of distorted hydrologic cycle. The feasible alternatives for the poor-conditioned region in the Anyangcheon watershed were proposed and quantitatively analyzed using continuous water quantity/quality simulation model, Hydrological Simulation Program-Fortran (HSPF). The effectiveness analyses include 355th flow and 275th flow of flow duration curve and number of increased days to satisfy the target monthly flow for water quantity and BOD average concentration, total daily loads and number of increased days to satisfy the target concentration and total daily loads. The feasible alternatives are restoration of covered stream, prevention of streamflow loss through sewers, redevelopment of existing reservoir, reuse of treated wastewater, use of groundwater collected by subway stations and construction of small wastewater treatment plant. Therefore, alternative priority ranking was derived from AEIs. It will be effective to make an integrated watershed management for sustainable development.

The bubble problem of the plasma facing material: A finite element study

  • Kang, Xiaoyan;Cheng, Xiyue;Deng, Shuiquan
    • Nuclear Engineering and Technology
    • /
    • 제52권10호
    • /
    • pp.2290-2298
    • /
    • 2020
  • The damage of first wall material in fusion reactor due to the bubbles caused by plasma has been studied by introducing a relation between the von Mises equivalent stress and the temperature field. The locations and shapes of the bubbles and the synergetic effect between the different bubbles under steady operational conditions have been studied using the finite elements method. Under transient heat loads, plastic deformations have been found to occur, and are significantly enhanced by the presence of the bubbles. The calculated concentration locations of von Mises equivalent stress are well consistent with the observed crack positions of the tungsten surface in many test experiments. Our simulations show that the damage of the bubbles is not severe enough to lead to catastrophic failure of the tungsten armor; however, it can cause local and gradual detachment of tungsten surface, which provides a reasonable explanation for the observed pits and rough or hairy surface morphology etc. Considering the transient heat loads, the lower bound of the security thickness of the tungsten tile is estimated to be greater than 2 mm.

헬리데크 구조물의 피로해석 (Fatigue analysis of helideck structures)

  • 전상익;오심관;노지선;김봉재;장기복
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2015년도 특별논문집
    • /
    • pp.63-68
    • /
    • 2015
  • This paper presents fatigue analysis of helideck structures located in FPSO. After FPSO is moved to the target position where production of resource is performed, FPSO stays at the target position and performs production of resource, storage and off-loading during the design life. Helideck structure is located in FPSO essentially for the movement of personnel and life rescue at emergency situations by using helicopters. Because inertial load induced by FPSO motion and landing and taking-off load of helicopter occur at helideck structures cyclically, helideck structures should be designed to withstand fatigue loads. Therefore, The fatigue assessment of helideck structures should be performed with fatigue loads. Effect of stress concentration due to misalignment between welded plates is considered in fatigue assessment additionally.

  • PDF

소양호에서 외부기원유기물의 유입, 유출 특성 (Characteristics of Allochthonous Organic Matter in Large Dam Reservoir, Lake Soyang)

  • 박혜경;권오윤;정동일
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.88-97
    • /
    • 2011
  • To identify the inflow and outflow characteristics of allchthonous organic matters and examine the change of allochthonous organic matter load pattern due to the climate change, we investigated the temporal variations of DOC and POC concentrations within inflow water and dam discharge water and spatio-temporal distribution of POM within the lake water in Lake Soyang which is the largest dam reservoir in Korea in 2006. Most of allochthonous DOC flowed into the lake water during initial rain and was not affected by the amount of precipitation, whereas most of allochthonous POC flowed into during concentrated heavy rain and the concentration of POC was significantly associated with the amount of inflow water and precipitation. Calculated annual allochthonous organic matter loads in Lake Soyang from 2003 to 2006 using the regression equation between the amount of inflow water and the concentration of POC indicate allochthonous organic matter loads are mainly affected by total influx and extreme influx of inflow water. The spatio-temporal distribution of POM indicated allochthonous organic matter of inflow river during flood period in July transported from upper part to middle and lower part of the lake a month later respectively along the middle layer of water column in Lake Soyang.

군산하구 해역에서의 부영양화 모델링 (Eutrophication Modelling in Gunsan Estuary)

  • 김종구;정태주;강훈;김준우;이남도
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.191-200
    • /
    • 2003
  • Gunsan coastal area is one of region increasing pollution problems. One of the most important factors that cause eutrophication is nutrient materials containing nitrogen and phosphorus which stem from excreation of terrestial sources. At this study, the three-dimensional numerical hydrodynamic and ecosystem model, which was developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the eutrophication. The residual currents, which were obtained by integrating the simulated tidal currents over 1 tidal cycle, showed the presence of a typical. Density driven currents were generated westward at surface and eastward at the bottom in Geum estuary area where the fresh waters are flowing into. The ecosystem model was calibrated with the data surveyed in the field of the study area in annual average. The simulated results of DIN were fairly good coincided with the observed values within relative error of 32.39%. correlation coefficient(r) of 0.99. In the case of DIP, the simulated results were fairly good coincided with the observed values within relative error of 24.26%, correlation coefficient (r) of 0.82. The simulations of DIN and DIP concentrations were performed using ecosystem model under the conditions of 20 ∼ 80% pollution load reductions from pollution sources. In study area, concentration of DIN and DIP were reduced to 20∼80% and under 10% in case of the 80% reduction of the input loads from fresh water respectively. But pollution loads from sediment had hardly affected DIN and DIP concentration. For the environment management of coastal areas, in case of Kunsan area, the most important pollution sources affecting eutrophication phenomenon were found to be the input loads from fresh water.

  • PDF

하수처리수 재이용에 따른 하천과 해역의 환경복원 및 수질관리 모델링 (Environmental Restoration and Water Quality Management Modeling of Coastal Area by Reuse of Treated Wastewater)

  • 이대인;윤양호;박일흠;이규형;조현서
    • 한국환경과학회지
    • /
    • 제16권4호
    • /
    • pp.505-521
    • /
    • 2007
  • This study estimated response of water duality and pollutant behavior according to the discharge and reuse of treated wastewater by three-dimensional eco-hydrodynamic model, and suggest plan that water quality management and environmental restoration in the coastal area including urban stream of Yeosu, Korea. Dispersions of low-saline water and COD by treated wastewater loads (design facility capacity, about $110,000m^3/d$) were very limited in near of effluent site. Nutrients, however, increase compared to the other water quality factors, especially total nitrogen was very sensitive to input loads. When reuse some of treated wastewater to Yeondeung stream, nitrogen was big influence on estuarine water quality. Although current characteristics of treated wastewater such as discharge and water quality were negligible to the change of marine environment, effluent concentration of COD, TN and TP, especially 40% of TN, are reduced within the allowable pollutant loads for satisfy environmental capacity and recommended water duality criteria. Also, controls of input point/non-point sources to Yeondeung stream and base concentration of pollutants in coastal sea itself are very necessary.

팔당호의 질소거동과 수지 (The Nitrogen Behavior and Budget in Lake Paldang)

  • 이장호;박혜경;이규;김은미
    • 한국물환경학회지
    • /
    • 제26권1호
    • /
    • pp.71-80
    • /
    • 2010
  • We studied the nitrogen behavior and budget of Lake Paldang from March to December 2008. The particulate nitrogen (PN) concentrations ranged from 7 to 13% of the total nitrogen concentration (TN) in the stream inflows, the downstream outflow, and the lake water. The nitrate nitrogen ($NO_3-N$) concentration ranged from 67 to 78% of the TN. In the three rivers of Lake Paldang, Gyeongan River (In3 site) had the highest average of the TN, 5.037 mgN/L, but North Han River (In2 site) had the lowest average TN, 1.683 mgN/L. South Han River (In1 site) had the average TN of 2.399 mgN/L. In the dam discharge, TN showed the average 2.063 mgN/L. In the lake water, L4 site (Gyeongan River area) had the highest average TN, 3.781 mgN/L, but L3 site (North Han River) had the lowest average TN, 1.587 mgN/L. Total input of nitrogen loads to Lake Paldang was about 30,875 ton/year in 2008. Inflow rivers contributed 30,643 ton/year (South Han River: 18,111 ton/year (59%), North Han River: 11,333 ton/year (37%), and Gyeongan River: 1,199 ton/year (4%)). The atmospheric deposition had 135 ton/year, the nitrogen release from the bottom sediments had 88 ton/year, and macrophytes had 9 ton/year. Total output of nitrogen loads from Lake Paldang was about 31,256 ton/year. The downstream from dam contributed 29,877 ton/year, and the sediment deposition was 1,379 ton/year.

수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발 (Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality)

  • 이치헌
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2011년도 학술발표회
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

해수펌프 임펠러 샤프트의 구조 재설계 (Structural Re-design of Seawater Pump Impeller Shaft)

  • 조규남
    • 한국해안·해양공학회논문집
    • /
    • 제22권5호
    • /
    • pp.326-332
    • /
    • 2010
  • 해수 임펠러샤프트의 각종 하중에 의한 파단과 이를 개선하기위한 재설계는 정적, 동적 해석을 통한 원인분석과 유한요소법을 이용하여 효과적으로 수행할 수 있다. 본 논문에서는 전형적인 임펠러 샤프트의 파손에 대한 원인 분석을 수행하고 관련된 재설계기법을 제시하였다. 일차적으로 정적구조해석을 수행하였고 다음으로 구조물의 외력과의 공진문제를 포함한 동적해석을 수행하였다. 구조해석은 ANSYS코드를 사용하였으며, 결과적으로 파단원인을 찾아 분석하였다. 주된 파단원인은 과도한 굽힘모멘트의 발생과 응력집중, 구조물의 외력과의 공진에 의한 것으로 분석되었다. 해수 임펠러샤프트의 파단과 관련된 재설계기법의 이론적 배경을 정립하였으며, 재설계기법의 적용성과 정적, 동적 샤프트 재설계에 대한 유용성을 제시하였다.