• Title/Summary/Keyword: Concentration Load

Search Result 1,033, Processing Time 0.028 seconds

Evaluating pollution origins of runoff in urban area by stormwater (강우시 도시지역 강우 유출수 오염부하 기원평가)

  • Hwang, Byung-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.930-934
    • /
    • 2006
  • In this study, we conducted water-quality analysis of wastewater and in-situ flow measurement using automatic flow rate measuring instrument to identify characteristics of wastewater in urban areas, and collected samples in gutter fur storm water drain, rainfall bucket, and aqueduct of pipe from roof, and outfalls of basins to examine the contribution by pollution origins such as base wastewater, atmospheric washing, runoff by roof surface, runoff by road surface, erosion of sewer sediment. In the result, the concentration of pollutants reached peak in the beginning of rainfall due to first flush, was 3 to 10 times higher than average concentration of dry period, and was lower than that of dry period due to dilution of storm water. In the analysis of the contribution by pollution origins, the ratio of load by sewer sediment resuspension to the total pollution load was 54.6% fer COD, and 73.3% fur SS. Accordingly, we can reduce the total pollutant load by periodical dredging and washing of sewer sediment, and control the loadings by overflow of combined sewer overflows.

  • PDF

Determination of CSOs Treatment Capacity considering the Pollution Load (오염부하량을 고려한 월류수 처리시설 규모 결정)

  • Kim, Joong Hoon;Yoo, Do Geun;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3270-3278
    • /
    • 2014
  • Many researches has been conducted as extreme rainfall in hydrology and extreme rainfall analysis is not proper for determination of CSOs treatment capacity. In this study, runoff is calculated by tranformation from rainfall to runoff according to Interevent Time Definition. The capacity of sewage treatment plant is designed by 3 times of DWF(Dry Weather Flow) and the efficiency of present sewage treatment plant is very low becauseat at present. Also, The sewage treatment plant can not control CSOs. In this research, the pollution load is calculated by EMC(Event Mean Concentration) and pollution concetration of total runoff is a standard deciding suitablility of present sewage treatment plant. Finally, CSOs treatment capacity is determinated considering pollution load.

The Behavior of Rammed Aggregate Piers (RAP) in Soft Ground (I) (연악지반의 쇄석다짐말뚝에 대한 거동 분석 (I))

  • Bae, Kyung-Tae;Lee, Chong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.169-183
    • /
    • 2007
  • Numerical analysis was performed to investigate the behavior of rammed aggregate piers (RAP) in soft ground with various interface conditions, area replacement ratio, aspect ratio and surcharge loads of pile and soil. And field modulus load test was carried out to predict the input parameters. Field prototype (unit cell) tests are in progress to compare the result of numerical analysis. Also a modified load transfer equation of RAP on soft foundation was proposed. According to the results, the behavior of RAP depended on such as interface conditions, settlement characteristics (free strain) and stress concentration ratio. On the other hand, maximun stress concentration ratio increased as area replacement ratio and aspect ratio increased, and it was remarkably affected by surcharge loads.

A Study on the Analysis of the Total Load by the Unit Stream Power (Unit Stream Power에 의한 총유사량해석(總流砂量解析)에 관한 연구(研究))

  • Lee, Won Hwan;Chun, Min Woo;Park, Sang Deog
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.79-92
    • /
    • 1984
  • The analysis of total load was carried out by using the theory of unit stseam power (USP). The dimensionless USP equation of $S_R$ which was the rate of suspended load and bed load was derived from the USP function by applying the Einstein's reference concentration and Stokes' fall velocity. And the R relationship between the water discharge and Reynolds number (Re) was discussed, and it was shown that USP was closely related with Re. The value of $S_R$ was determined from the experimental data of Han River downstream and Mantz. And it was tested to several observatories of Korean Rivers. A good correlation among USP, suspended load and $S_R$ was shown and USP was increased with the increment of the turbulent intensity. Judging from the above results, it is considered this study can be contributed to estimate the total load.

  • PDF

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Study on the stress distribution around two types of implants with an internal connection by finite element analysis (임프란트와 지대주 간 내측 연결을 갖는 2종의 임프란트에서 저작압이 임프란트 주위골 내응력 분포에 미치는 영향에 관한 연구)

  • Yoo, Mi-Kyung;Lim, Sung-Bin;Chung, Chin-Hyung;Hong, Ki-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.473-488
    • /
    • 2006
  • Adequate bone quality and stress distribution to the bone are of decisive importance for implant success. Even though the success rates of dental implants have been high, implant failures do occur. Overloading has been identified as a primary factor behind dental implant failure. The purpose of this study was to theoretically investigate the effect of two types of implants on the stress distribution in poor bone quality. Employing the finite element method, the study modeled a 4.1 mm diameter, 12.0 mm length implant placed in cortical or spongeous bone. A static loading of lOON was applied at the occlusal surface at 0, 30 degrees angle to the vertical axis of the implant. von Mises stresses concentrations in the supporting bone were analyzed with finite element analysis program. The results were as follows; 1. The stresses at the marginal bone were higher under buccal oblique load(30 degrees off of the long axis) than under vertical load. 2. Under buccal oblique load, the stresses were higher at the lingual marginal bone than at the buccal marginal bone, and the differences were almost the same. 3, Under vertical and oblique load, the stress was the highest at the marginal bone and lowest at the bone around apical portions of implant in cortical bone. 4, Under vertical load, Model 1 showed more effective stress distribution than Model 2 irrespective of bone types. On the other hand, Model 2 showed lower stress concentration than Model 1 under buccal oblique load.

Characteristics of Suspended Solids Export from Paddy Fields (논에서의 SS 유출 특성)

  • Lee, Kyoungsook;Jung, Jaewoon;Choi, Dongho;Yoon, Kwangsik;Choi, Woojung;Choi, Soomyung;Lim, Sangsun;Park, Hana;Lim, Byungjin;Choi, Gangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.868-876
    • /
    • 2011
  • A five-year field monitoring was conducted to monitor characteristics of suspended solid (SS) export from paddy fields. The observed EMCs of SS ranged 1.2~517 mg/L (avg. 52.1 mg/L) during storm period. The concentration of SS during non-storm period were 1.1~349.5 mg/L (avg. 36.1 mg/L). Monthly load of SS was high during summer when rainfall amount was high. The load was higher than that of May when tillage effect is expected. There was no significant relationship between SS EMCs and rainfall or drainage amount. However, effects of rainfall and drainage were found to be significant for event load of SS. But, there was no apparent relationship between rainfall amount of cropping period and load of SS for that period. The observed SS load was 164.8~456.0 kg/ha (avg. 301.2 kg/ha) and mostly occurred during storm period. This study results also suggested that SS load estimation by USLE equation for paddy field could be overestimated, if not carefully handled. Monitoring studies for various climate, soil, and agricultural management are required to get better scope of SS export from paddy fields.

Structure and Strength Analysis of Scissors Boom of Heavy Load Transporter through Finite Element Analysis (유한요소해석을 통한 중량물 이동대차 시저스붐의 구조 및 강도 해석)

  • Hyeon-Ho Lim;Chang-Min Yang;Kwon-Woong Choi;Dae-Woo Choi
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.spc
    • /
    • pp.61-67
    • /
    • 2023
  • Special equipment used for snow removal is only used in the winter and must be moved into storage during non-winter seasons. However, when moving heavy equipment using a forklift within a limited space, safety accidents may occur due to deformation and damage due to the worker's limited visibility and excessive loading of heavy objects. In this study, the scissors boom of the developed heavy load transporter was conducted in two cases: link structural analysis and position-based structural analysis. In detail, the link structural analysis covers four cases of stress and safety factor according to material and thickness to optimize the specifications of the material selected during development, and the structural analysis according to position covers two cases before and after the lift, when maximum stress concentration is achieved. Safety was evaluated through finite element analysis. As a result of the study, when manufacturing a scissors boom type heavy load transporter that can withstand a load of 10 tons, the link showed safety at SS400 4.5mm or higher, and reinforcement is needed in the upper and lower structures, so it is judged to be useful in applying materials according to the load.

Effect of the marginal position of prosthesis on stress distribution of teeth with abfraction lesion using finite element analysis (보철물 변연의 위치가 abfraction된 치아의 응력 분포에 미치는 영향에 대한 유한요소법적 분석)

  • Kim, Myeong-Hyeon;Lee, Cheong-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.3
    • /
    • pp.202-210
    • /
    • 2014
  • Purpose: The aim of this study was to evaluate the stress concentration and distribution whether restoring the cavity or not while restoring with metal ceramic crown on tooth with abfraction lesion using finite element analysis. Materials and methods: Maxillary first premolar was selected and made a total of 10 finite element model. Model 1 was natural tooth; Model 2 was tooth with metal ceramic crown restoration which margin was positioned above 2 mm from CEJ; Model 3 was tooth with metal ceramic crown restoration which margin was positioned on CEJ; Model 4 was natural tooth which has abfraction lesion; Model 5 and 6 had abfraction lesion and the other condition was same as model 2 and 3, respectively; Model 7 was natural tooth which had abfraction lesion restored with composite resin; Model 8 and 9 was tooth with metal ceramic crown after restoring on abfraction lesion with composite resin; Model 10 was restored tooth on abfraction lesion with composite resin and metal ceramic crown restoration which margin is positioned on lower border of abfraction lesion. Load A and Load B was also designed. Von Mises value was evaluated on each point. Results: Under load A or load B, on tooth with abfraction lesion, stress was concentrated on the apex of lesion. Under load A or load B, on tooth that abfraction lesion was restored with composite resin, the stress value was reduced on the apex. Conclusion: In case of abfraction lesion was restored with composite resin, the stress was concentrated on the apical border of restored cavity regardless of marginal position. It was favorable to place crown margin on the enamel for restoring with metal ceramic crown.

The Effect of Aircraft Traffic Emissions on the Soil Surface Contamination Analysis around the International Airport in Delhi, India

  • Ray, Sharmila;Khillare, P.S.;Kim, Ki-Hyun
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.118-126
    • /
    • 2012
  • To investigate the effect of aircraft traffic emissions on soil pollution, metal levels were analyzed for 8 metals (Fe, Cr, Pb, Zn, Cu, Ni, Mn and Cd) from the vicinity of the Indira Gandhi International (IGI) airport in Delhi, India. The texture of the airport soil was observed to be sandy. Among the metals, Cd showed minimum concentration ($2.07{\mu}g\;g^{-1}$), while Fe showed maximum concentration ($4379{\mu}g\;g^{-1}$). The highest metal accumulation was observed at the landing site. Significant correlations were observed between metals and different textures (sand, silt, and clay) as well as with organic carbon (OC). The results indicate that grain size play a major role in OC retention in soil and subsequently helps in adsorption of metals in soil. M$\ddot{u}$ller's geoaccumulation index (I-geo) showed that airport soil was contaminated due to Cd and Pb with the pollution class 2 and 1, respectively. Pollution load index of the airport site was 1.34-3 times higher than the background site. The results of factor analysis suggested that source of the soil metal is mainly from natural weathering of soil, aircraft exhaust, and automobile exhaust from near by area. With respect to Dutch target values, the airport soils showed ~3 times higher Cd concentration. The study highlighted the future risk of enhanced metal pollution with respect to Cd and Pb due to aircraft trafficking.