• Title/Summary/Keyword: Concentrating Photovoltaic Power System

Search Result 12, Processing Time 0.024 seconds

Designed and Performance Analysis of High Efficiency Concentrated Photovoltaic System using III-V Compound Semiconductor (III-V 화합물 반도체를 이용한 고효율 집광형 태양광 발전시스템 설계 및 성능분석)

  • Ko, Jae-Hong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.33-39
    • /
    • 2012
  • For photovoltaic power generation need certainly decreasing module's price and increasing promote efficiency technology. Almost of solar panel is on the decrease energy efficiency since 2,000. like silicone(Si) solar panel, thin film solar panel and etc. Silicone(Si) solar panel was best efficiency in 1999. It's 24%. But after that time, It didn't pass limit of energy efficiency. That's why, nowadays being issued that using III-V compound semiconductor to high efficiency of concentrating photovoltaic system for making an alternative proposal. In Korea, making researches in allied technology with III-V compound semiconductor solar panel, condenser technology, and solar tracker. but feasibility study for concentrating photovoltaic power generation hasn't progressed yet. This thesis made a plan about CPV(Concentrating Photovoltaic)system and CPV has a higher energy efficiency than PV(Photovoltaic)system in fine climate conditions from comparing CPV with using silicone(Si) solar panel to PV's efficiency test result.

A Study on Concentrating Photovoltaic Module with Plate Structure (평판 구조의 집광형 태양광 모듈 구조에 관한 연구)

  • Park, Seung-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

Application Possibility of Mono-Crystalline Silicon Solar Cell for Photovoltaic Concentrating System (단결정 실리콘 태양전지의 집광형 시스템으로의 적용 가능성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.22-23
    • /
    • 2007
  • We tried to find the possibility of mono-crystalline silicon solar cell for photovoltaic concentrating system which is major cost portion for PV system using fresnel lens. With solar simulator and I-V curve tracer, we analyzed maximum output characteristics and measured the temperature of concentrated area using infrared camera. Because of temperature increase, there was no merit when concentrating. But at low radiant power, it showed more efficient operation. The combination of heat-sink technology and tracking system to our concentrating PV system would give better performance results.

  • PDF

Experimental Investigation of Concentrating Photovoltaic System Applying Commercial Multi-array Lens for Space Applications (상용 배열형 렌즈를 적용한 집광형 태양전력시스템의 우주 적용 가능성 실험적 검토)

  • Park, Tae-Yong;Chae, Bong-Geon;Lee, Yong-Geun;Kang, Suk-Joo;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.622-627
    • /
    • 2014
  • A pico-class satellite has limitation to generate power from the solar cells due to its limited accommodation area to install the solar cells. The variation of incidence angle between solar panels and sunlight induced by the revolution and rotation of the satellite is one of the key parameters to determine the power generation. In this study, we proposed a concentrating photovoltaic system for pico-class satellite applications to enhance power generation when the ${\beta}$ angle between the sunlight and the solar panel is zero by effectively concentrating solar energy on solar panels. The feasibility of the conceptual idea has been demonstrated by power measurement test using solar simulator and commercial multi-array lens system.

On-orbit Analysis of Power Generation Efficiency of Concentrating Photovoltaic System Using Commercial Fresnel Lens for Pico Satellite Applications (상용 프레넬렌즈를 이용한 극초소형 위성용 집광형 태양전력 시스템의 궤도 전력생성효율 분석)

  • Park, Tae-Yong;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.318-325
    • /
    • 2015
  • Pico satellite has limited surface to install the solar cells due to its extremely limited size. Also, the sun incidence angle with respect to the solar panel continuously varies according to the attitude control strategy and its important parameter for the power generation. In this study, a concentrating photovoltaic system for pico satellite application has been proposed that can enhance the power generation efficiency in case of the unfavorable condition of the sun incidence angle with respect to the solar panel of the satellite using the fresnel lens. To prove the possibility of maximizing the power generation efficiency of the proposed concentrating power system, we have performed the power measurement test using a solar simulator and commercial fresnel lens. And on-orbit analysis of the power generation efficiency using the STK which is a commercial S/W has also been performed based on the test results.

Electrical Characteristics of Mono Crystalline Silicon Solar Cell for Concentrating PV System using Fresnel Lenses (프레넬 렌즈를 이용한 집광 시 단결정 실리콘 태양전지의 전기적 특성)

  • Kang, Kyung-Chan;Kang, Gi-Hwan;Yu, Gwon-Jong;Huh, Chang-Su
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.218-219
    • /
    • 2007
  • Silicon feed stock shortage have acted as major restraints for growth of photovoltaic industry. Concentrating photovoltaic (CPV) system will reduce the use of silicon PV materials. This paper presents the application possibility of mono-crystalline silicon solar cell, which has increased in market share, for PV concentrator. We measured the power of solar cell using sun simulator and I-V curve tracer and compared the results. The comparison of results showed that the concentrated solar cell generated the power more approximately 7 times than without concentration in spite of non-heat sink. If CPV technology included heat sink combines already developed PV tracking system, it will have a merit economically.

  • PDF

Applied Spherical Lens with Reflect Mirror for the CPV module (반사판 적용 구형렌즈를 갖는 집광형 태양전지모듈)

  • Lee, Kang-Yeon;Jeong, Byeong-Ho;Kim, Hyo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.83-90
    • /
    • 2011
  • There are two main types of concentrating optical systems in use today: refractive types that use Fresnel lenses, and reflective systems that use one or more mirrors. Regardless of the chosen optical system, the result is concentrated sunlight being aimed at the sensitive face of the cell, to produce more energy from less photovoltaic material. In this paper, for the achieve trackerless CPV system, CPV module included that the spherical lens with reflect mirror makes it possible to achieve high and stable power generation performance for the high concentration photovoltaic power generation system and cope with the needs for a variety of shapes and sizes in flexible manners and that the multiple cavity assemble method greatly reduces costs. Development of these high performance multi-junction CPV module promises to accelerate growth in photovoltaic power generation.

A Study on the Performance Analysis for the CPV Module Applying Sphericalness Lens (구형렌즈를 적용한 CPV 모듈 발전성능 분석에 관한 연구)

  • Jeong, Byeong-Ho;Kim, Nam-Oh;Lee, Kang-Yoen
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.293-297
    • /
    • 2010
  • Next generation concentrating photovoltaic technologies could have a large-scale impact on world electricity production once they will become economically attractive and grid parity will be reached. Multi-junction solar cells will be characterised by a high value of the cell economical performance index if the cells were able to operate at high concentration level. Concentrating the sunlight by optical devices like lenses or mirrors reduces the area of expensive solar cells or modules, and, moreover, increases their efficiency. Accurate and reliable tracking is an important issue to maintain high the CPV system output power. Further, for high concentration CPV systems, the actual tracker cost is about 20% of the total CPV system cost. In this paper high-concentration is defined as systems using concentration ratios well above 100 times the one sun intensity and trackerlss CPV system studied. Using sphericalness lens and parallel MJ cell connection method were suggested and achieved experiment on a clear day in summer. Development of these high performance multi-junction CPV module promises to accelerate growth in photovoltaic power generation.

A Study on the Tracking Method for Solar Module to Derive Optimum Performance (최적 발전성능 도출을 위한 태양광모듈 추적방법에 관한 연구)

  • Kim, Yongjin;Lee, Jong Soo;Chung, Yu-Gun;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.113-118
    • /
    • 2012
  • The photovoltaic is one of the most important sustainable technologies appliable to architectures. The power performance mainly depends on the installation conditions of them. This study aims to evaluate the power performance of photovoltaic system by the installation conditions, the tracking methods and reflecting mirrors. For the study, the Solar Pro computer simulations have been conducted on installation angles, solar azimuth and solar altitude. Also, the field mock-up tests are performed to of its application to verify the simulation results. Both the results of the experiment and the simulation have proved that the efficiency of 90-degree fixed angle method was higher than that of 30-degree fixed angle, the efficiency of altitude tracking was better than that of azimuth tracking method, and changing both the altitude and the azimuth together is more efficient rather than the shortened tracing way. In addition, the light-concentrating method in which the incidence angle of the sun is controlled by an adhered reflector has been analyzed to have better efficiency than the general method of tracing according to the orbit of the sun. Therefore, this thesis is expected to offer the basic data to set a more effective tracing-type of photovoltaic power generation system in the future. For this, more researches are to be conducted hereafter on a high efficiency drive motor and the establishment of an economic system.

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.