• Title/Summary/Keyword: Concentrate: Roughage Ratio

Search Result 70, Processing Time 0.082 seconds

Effects of Concentrate to Roughage Ratios on Duration and Frequencies of Rumination and Chewing in Hanwoo Steers (농후사료와 조사료의 비율이 한우의 저작 및 반추시간과 빈도에 미치는 영향)

  • Lee, W.S.;Lee, B.S.;Oh, Y.K.;Kim, K.H.;Kang, S.W.;Lee, Sang.S.;Ha, J.K.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • The effects of concentrate to roughage ratios on duration and frequencies of rumination and chewing in Hanwoo steers were determined. Five Hanwoo steers fitted with rumen fistula were used to evaluate the effects of concentrate to rice straw ratio on eating and ruminating behavior. Experimental diets were formulated with different concentrate to rice straw ratios(50 : 50, 60: 40, 70: 30, 80: 20, 90: 10). When level of roughage feed was increased by 10, 20, 30, 40 to 50% of total dry matter of the diet, total chewing time was increased linearly from 286.99, 321.09, 390.29, 406.63 to 423.30 min/d, which was mainly due to increased ruminating time from 204.91 to 342.80 min/day. However, the level of roughage did not affect eating time. The number of chews per day for rumination and number of chews per rumination were significantly decreased(p < 0.05) as roughage level was increased. In summary, the duration and frequencies of rumination in Hanwoo increased with increased rice straw level.

Energy Metabolism and Methane Production in Faunated and Defaunated Sheep Fed Two Diets with Same Concentrate to Roughage Ratio (70:30) but Varying in Composition

  • Chandramoni, Chandramoni;Jadhao, S.B.;Tiwad, C.M.;Haque, N.;Murarilal, Murarilal;Khan, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.9
    • /
    • pp.1238-1244
    • /
    • 2001
  • Two calorimetric experiments were performed to investigate the effects of two diets with same concentrate: roughage ratio (70:30) but varying in composition on energy metabolism and methane production in faunated (F) and defaunated (DF) Muzaffarnagari sheep. For experiment I, ten animals were divided equally into two groups of which one was kept normally F as such while other was DF using 10% sodium lauryl sulphate. All the animals were offered diet I which comprised of oat hay and concentrate mixture I (CM I) containing maize grain (93%) as a major ingredient in 70:30 ratio. Similarly, the experiment II was conducted for which four F and four DF sheep (same as used for experiment I) were switched to diet II that consisted of maize hay and CM II (maize grain 59% + molasses 36%). Through diet II, DM intake in DF sheep was significantly (p<0.05) lower. Intake of GE through both the diets was similar in F and DF sheep. Digestibility of DM, OM, CP and GE and also metabolisability (ME/GE) was similar in F and DF sheep on both the diets. Total urinary energy loss did not differ in F and DF on both the diets, but methane energy loss as a percent of GE in DF was significantly (p<0.05) lower on diet I (3.75 vs 2.48), while it did not differ on diet II (3.20 vs 3.60). Heat production was significantly (p<0.01) reduced in DF on both the diets. Although, efficiency of utilisation of ME for maintenance calculated as per ARC (1984) did not differ in F and DF on both the diets, efficiency for maintenance and growth was higher (0.60 vs 0.672) on diet I in DF. It was inferred that methane production in DF sheep reduces on good quality hay-based diet supplemented with slowly fermentable carbohydrate (maize grain) but supplementation of molasses (rapidly fermentable CHO) nullify this effect when sheep were fed diets with concentrate: roughage ratio of 70:30.

Influence of Rain Tree Pod Meal Supplementation on Rice Straw Based Diets Using In vitro Gas Fermentation Technique

  • Anantasook, N.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.3
    • /
    • pp.325-334
    • /
    • 2012
  • The objective of this study was to determine the roughage to concentrate (R:C) ratio with rain tree pod meal (RPM) supplementation on in vitro fermentation using gas production technique. The experiment design was a 6${\times}$4 factorial arrangement in a CRD. Factor A was 6 levels of R:C ratio (100:0, 80:20, 60:40, 40:60, 20:80 and 0:100) and factor B was 4 levels of RPM (0, 4, 8 and 12 mg). It was found that gas kinetic, extent rate (c) was linearly increased (p<0.01) with an increasing level of concentrate while cumulative gas production (96 h) was higher in R:C of 40:60. In addition, interaction of R:C ratio and RPM level affected $NH_3-N$ and IVDMD and were highest in R:C of 0:100 with 0, 4 mg of RPM and 40:60 with 8 mg of RPM, respectively. Moreover, interaction of R:C ratio and RPM level significantly increased total volatile fatty acids and propionate concentration whereas lower acetate, acetate to propionate ratios and $CH_4$ production in R:C of 20:80 with 8 mg of RPM. Moreover, the two factors, R:C ratio and RPM level influenced the protozoal population and the percentage of methanogens in the total bacteria population. In addition, the use of real-time PCR found that a high level of concentrate in the diet remarkably decreased three cellulolytic bacteria numbers (F. succinogenes, R. flavefaciens and R. albus). Based on this study, it is suggested that the ratio of R:C at 40:60 and RPM level at 12 mg could improve ruminal fluid fermentation in terms of reducing fermentation losses, thus improving VFA profiles and ruminal ecology.

Influence of Yeast Fermented Cassava Chip Protein (YEFECAP) and Roughage to Concentrate Ratio on Ruminal Fermentation and Microorganisms Using In vitro Gas Production Technique

  • Polyorach, S.;Wanapat, M.;Cherdthong, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • The objective of this study was to determine the effects of protein sources and roughage (R) to concentrate (C) ratio on in vitro fermentation parameters using a gas production technique. The experimental design was a $2{\times}5$ factorial arrangement in a completely randomized design (CRD). Factor A was 2 levels of protein sources yeast fermented cassava chip protein (YEFECAP) and soybean meal (SBM) and factor B was 5 levels of roughage to concentrate (R:C) ratio at 80:20, 60:40, 40:60, 20:80, and 0:100, respectively. Rice straw was used as a roughage source. It was found that gas production from the insoluble fraction (b) of YEFECAP supplemented group was significantly higher (p<0.05) than those in SBM supplemented group. Moreover, the intercept value (a), gas production from the insoluble fraction (b), gas production rate constants for the insoluble fraction (c), potential extent of gas production (a+b) and cumulative gas production at 96 h were influenced (p<0.01) by R:C ratio. In addition, protein source had no effect (p>0.05) on ether in vitro digestibility of dry matter (IVDMD) and organic (IVOMD) while R:C ratio affected the IVDMD and IVOMD (p<0.01). Moreover, YEFECAP supplanted group showed a significantly increased (p<0.05) total VFA and $C_3$ while $C_2$, $C_2:C_3$ and $CH_4$ production were decreased when compared with SBM supplemented group. In addition, a decreasing R:C ratio had a significant effect (p<0.05) on increasing total VFA, $C_3$ and $NH_3$-N, but decreasing the $C_2$, $C_2:C_3$ and CH4 production (p<0.01). Furthermore, total bacteria, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus populations in YEFECAP supplemented group were significantly higher (p<0.05) than those in the SBM supplemented group while fungal zoospores, methanogens and protozoal population remained unchanged (p>0.05) as compared between the two sources of protein. Moreover, fungal zoospores and total bacteria population were significantly increased (p<0.01) while, F. succinogenes, R. flavefaciens, R. albus, methanogens and protozoal population were decreased (p<0.01) with decreasing R:C ratio. In conclusion, YEFECAP has a potential for use as a protein source for improving rumen fermentation efficiency in ruminants.

EFFECTS OF RATIO OF CONCENTRATE TO ROUGHAGE AND KINDS OF HAY IN A RATION ON ESTIMATING THE RUMEN DEGRADABILITY OF PROTEIN OF FORMULATED CONCENTRATE

  • Sekine, J.;Oura, R.;Asahida, Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.1
    • /
    • pp.19-24
    • /
    • 1992
  • Formula feed for fattening cattle ground through 2 mm screen was incubated in the rumen of sheep and goats to evaluate effects of ratio of concentrate to hay and kinds of hay in a ration on determining the degradability (dg) value of protein using in sacco technique. Following results were obtained: 1) Residual dry matter (DM) and crude protein (CP) of formula feed decreased as the time of incubation increased. Regression analyses showed that rates of degradation of DM and CP in the rumen were not the same when they were determined under feeding of rations with different percentages of concentrate. 2) Rate of passage of digesta from the rumen differed between feeding of Italian ryegrass hay ration and that of alfalfa hay ration, but was not influenced by the percentage of concentrate in a ration. 3) The dg value was different when it was estimated with results obtained from determinations under feeding of Italian ryegrass hay ration or that of alfalfa hay ration. The percentage of concentrate in a ration had no influence on the dg value of protein in formula feed.

UTILIZATION OF ROUGHAGE AND CONCENTRATE BY FEEDLOT SWAMP BUFFALOES (BUBALUS BUBALlS)

  • Wanapat, M.;Wachirapakorn, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.3
    • /
    • pp.195-203
    • /
    • 1990
  • Thirty-six yearling (18 bulls, 18 heifers) swamp buffaloes (Bubalus bubalis) with average liveweight $177{\pm}26kg$, were randomly allotted to receive 6 dietary treatments according to a $2{\times}3$ factorial arrangement in a completely randomized design (CRD). Factor A assigned for two types of straw; untreated rice straw (RS) and urea-treated (5%, w/w) rice straw (UTS). Factor B assigned for three ratio of roughage to concentrate (R:C) at 80:20, 50:50 and 20:80. Feeding trial lasted for 9 months during which respective feeds were offered at 3% body weight and adjusted at bi-weekly intervals using corresponding liveweights. Parameters measured under this experiment were feed intake, ruminal fluid for pH, $NH_3-N$, volatile fatty acids (VFA), liveweight change at bi-weekly intervals, carcass characteristics and cost-net profit analysis. It was found that intakes and digestion coefficients of DM, OM, CP except NDF and ADF were improved appreciably when ratio of concentrate increased. The average daily gain (ADG) and feed conversion ratio (FCR) were highest in group fed urea-treated rice straw at R:C levels of 20:80 (551.2 g/d, 10.7 kg/kg) and 50:50 (542.3 g/d, 10.6 kg/kg). It was obvious that FCR was best in the group fed on urea-treated rice straw (13.8 kg/kg) as compared to untreated rice straw fed-group (24 kg/kg). Carcass compositions of buffaloes measured resulted in 48.2 dressing percentage in all treatments offered at R:C levels of 50:50 and 20:80, however, loin eye area were 46.0, 53.6, 50.0 and $54.0cm^2$ for RS and UTS at respective levels of R:C. It was notable that carcass fat content was low which resulted in higher content of lean meat particularly in group fed UTS at 50:50 ratio R:C. Simple cost-net profit analysis was performed, it was found that net profits were obtained as follows 27, 30, -47, 44, 58, 22 $US/hd for respective treatment groups of RS and UTS at respective R:C levels. As shown, the best net profit resulted in group fed UTS at 50:50 R:C level.

Effect of Diet on Enzyme Profile, Biochemical Changes and In sacco Degradability of Feeds in the Rumen of Buffalo

  • Kamra, D.N.;Saha, Sudipto;Bhatt, Neeru;Chaudhary, L. C.;Agarwal, Neeta
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.374-379
    • /
    • 2003
  • Four rumen fistulated Murrah buffaloes were used to study the effect of four diets differing in roughage to concentrate ratio on rumen biochemical changes, microbial enzyme profile and in sacco degradability of feed in a $4{\times}4$ Latin Square design. The animals were fed four diets consisting of 80:20, 70:30, 60:40 and 50:50 ratios of wheat straw and concentrate mixtures, respectively. Wheat straw and concentrate mixture were mixed with water (0.6 l/kg feed) and complete feed mixture was offered to the animals at 8:00 h and 16:00 h in two equal parts. The variation in pH of rumen liquor (difference of maximum and minimum during 0-8 h post feeding) increased with increasing level of concentrate mixture in the diet. There was no effect of diet composition on volatile fatty acids, total nitrogen and trichloro-acetic acid precipitable nitrogen in the rumen liquor, but ammonia nitrogen increased with increasing level of concentrate mixture in the ration. Major portions of all fibre degrading enzymes were present in the particulate material (PM) of the rumen contents, but protease was absent in PM fraction. The activities of micro-crystalline cellulase, acetyl esterase and protease increased with increase in the level of concentrate mixture, but the activities of other enzymes (carboxymethylcellulase, filter paper degrading activity, xylanase, $\beta$-glucosidase and $\beta$-xylosidase) were not affected. The in sacco degradability and effective degradability of feeds increased with increasing level of concentrate mixture in the ration.

Using Plant Source as a Buffering Agent to Manipulating Rumen Fermentation in an In vitro Gas Production System

  • Kang, S.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1424-1436
    • /
    • 2013
  • The objective of this study was to investigate the effect of banana flower powder (BAFLOP) supplementation on gas production kinetics and rumen fermentation efficiency in in vitro incubation with different ratios of roughage to concentrate in swamp buffalo and cattle rumen fluid. Two male, rumen fistulated dairy steers and swamp buffaloes were used as rumen fluid donors. The treatments were arranged according to a $2{\times}2{\times}3$ factorial arrangement in a Completely randomized design by using two ratios of roughage to concentrate (R:C; 75:25 and 25:75) and 3 levels of BAFLOP supplementation (0, 2 and 4% of dietary substrate) into two different kinds of rumen fluid (beef cattle and swamp buffalo). Under this investigation, the results revealed that the rumen ecology was affected by R:C ratio. The pH declined as a result of using high concentrate ratio; however, supplementation of BAFLOP could buffer the pH which led to an improvement of ruminal efficiency. BAFLOP supplementation affected acetic acid (C2) when the proportion of concentrate was increased. However, there were no effect on total volatile fatty acid (TVFA) and butyric acid (C4) by BAFLOP supplementation. The microbial community was affected by BAFLOP supplementation, especially the bacterial population. As revealed by real-time PCR, the populations of F. succinogenes and R. albus were reduced by the high concentrate treatments while that of R. flavafaciens were increased. The populations of three dominant cellulolytic bacteria were enhanced by BAFLOP supplementation, especially on high concentrate diet. BAFLOP supplementation did not influence the ammonia nitrogen ($NH_3$-N) concentration, while R:C did. In addition, the in vitro digestibility was improved by either R:C or BAFLOP supplementation. The BAFLOP supplementation showed an effect on gas production kinetics, except for the gas production rate constant for the insoluble fraction (c), while treatments with high concentrate ratio resulted in the highest values. In addition, BAFLOP tended to increase gas production. Based on this study, it could be concluded that R:C had an effect on rumen ecology both in buffalo and cattle rumen fluid and hence, BAFLOP could be used as a rumen buffering agent for enhancing rumen ecology fed on high concentrate diet. It is recommended that level of BAFLOP supplementation should be at 2 to 4% of total dry matter of substrate. However, in vivo trials should be subsequently conducted to investigate the effect of BAFLOP in high concentrate diets on rumen ecology as well as ruminant production.

UTILIZATION OF RICE STRAW BY RUMINANTS AS INFLUENCED BY GRASS HAY SUPPLEMENTATION

  • Han, In K.;Ha, J.K.;Garrett, W.N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.4
    • /
    • pp.561-567
    • /
    • 1993
  • Twenty Korean native bulls averaging 181 kg body weight were fed a fixed amount (1.5% of live weight) of concentrate and free choice roughage cubes which had four ratios of rice straw and orchard grass hay; 100:0, 85:15, 70:30 and 55:45 on a weight basis. Five bulls were assigned to each treatment and fed for 98 days in a confinement house. Nutrient digestibility and available energy content of mixed rations (40% concentrate and 60% roughage cubes) was determined in a digestion trial with twelve wethers. In vitro dry matter digestibility (IVDMD) and in situ dry matter disappearance of the roughage cubes were also determined. The ratio of grass hay to rice straw did not influence dry matter intake. Significant improvements in body weight gains and feed/gain ratios were obtained as grass hay levels increased. Average daily gain and feed/gain for each treatment was 0.83, 0.88, 0.98 and 0.99 kg; 7.63m 7.59, 6.83 and 6.41, respectively. Digestibility of the nutrients was improved with increasing levels of grass hay in the cubes. The IVDMD of roughage samples having a ritio of 100:0, 85:15, 70:30 and 55:45 between rice straw and orchard grass hay were 31.0, 37.1, 41.8 and 43.4%, respectively. Grass hay improved the IVDMD of rice straw diets in a linear manner up to 30%. In situ dry matter disappearance rate was also increased as the level of orchard grass hay increased.

Chewing Activities of Selected Roughages and Concentrates by Dairy Steers

  • Moon, Y.H.;Lee, S.C.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.968-973
    • /
    • 2002
  • To evaluate the chewing activity of ruminant feeds, four Holstein steers (average body weight $742{\pm}15kg$) were employed. Experimental feeds were four roughages ($NH_3$-treated rice straw, alfalfa hay, corn silage, orchard grass hay) and four concentrate ingredients (cotton seed hull, beet pulp pellet, barley grain, oat grain). Regarding palatability for each experimental feeds which was overviewed during the adjustment period, animals were fed roughages alone, but with 50% $NH_3$-treated rice straw ($NH_3$-RS) for concentrate ingredients. Therefore, all the data for concentrate ingredients was derived by extracting the result per unit obtained from steers fed $NH_3$-RS alone. The experiment was conducted using a 4${\times}$4 Latin square designs for roughages and concentrate ingredients. Experimental feeds were fed during a 10 d adaptation and 2 d chewing data collection during each experimental period. Animals were gradually adjusted to the experimental diet. Dry matter intake (DMI) was restricted at a 1.4% of mean body weight (10.4 kg DM/d). Time spent eating and eating chews per kilogram of DMI were greatest for beet pulp pellet, and lowest for barley grain (p<0.05). Time spent rumination per kilogram of DMI was greatest for $NH_3$-RS, cotton seed hull and orchard grass, but rumination chews were greatest for cotton seed hull and orchard grass except $NH_3$-RS (p<0.05). Roughage index value (chewing time, minute/kg DMI) was 58.0 for cotton seed hull, 56.1 for beet pulp pellet, 55.5 for $NH_3$-RS, 53.1 for orchard grass hay, 45.9 for corn silage, 43.0 for alfalfa hay, 30.0 for oat grain, and 10.9 for barley grain. The ratio of rumination time to total chewing time (eating plus ruminating) was about 72% for the roughages except corn silage (66.9%), and followed by cotton seed hull (69.5%), and ranged from 49.5% to 52.9% for other feeds. Higher percentages of rumination in total chewing time may be evidently indicate the characteristics of roughage. Therefore, this indicate that the chewing activity of concentrate ingredients can be more fully reflects by the ruminating time than total chewing time (RVI), although it is reasonable to define the RVI for roughages.