• 제목/요약/키워드: Concave surface

검색결과 207건 처리시간 0.028초

The effect of impact with adjacent structure on seismic behavior of base-isolated buildings with DCFP bearings

  • Bagheri, Morteza;Khoshnoudiana, Faramarz
    • Structural Engineering and Mechanics
    • /
    • 제51권2호
    • /
    • pp.277-297
    • /
    • 2014
  • Since the isolation bearings undergo large displacements in base-isolated structures, impact with adjacent structures is inevitable. Therefore, in this investigation, the effect of impact on seismic response of isolated structures mounted on double concave friction pendulum (DCFP) bearings subjected to near field ground motions is considered. A non-linear viscoelastic model of collision is used to simulate structural pounding more accurately. 2-, 4- and 8-story base-isolated buildings adjacent to fixed-base structures are modeled and the coupled differential equations of motion related to these isolated systems are solved in the MATLAB environment using the SIMULINK toolbox. The variation of seismic responses such as base shear, displacement in the isolation system and superstructure (top floor) is computed to study the impact condition. Also, the effects of variation of system parameters: isolation period, superstructure period, size of seismic gap between two structures, radius of curvature of the sliding surface and friction coefficient of isolator are contemplated in this study. It is concluded that the normalized base shear, bearing and top floor displacement increase due to impact with adjacent structure. When the distance between two structures decreases, the base shear and displacement increase comparing to no impact condition. Besides, the increase in friction coefficient difference also causes the normalized base shear and displacement in isolation system and superstructure increase in comparison with bi-linear hysteretic behavior of base isolation system. Totally, the comparison of results indicates that the changes in values of friction coefficient have more significant effects on 2-story building than 4- and 8-story buildings.

강우를 고려한 사면내 요부(凹部)에서의 안정성 해석 (Stability Analysis of the Concave Zone in a Slope Considering Rainfall)

  • 사공명;임경재
    • 한국지반공학회논문집
    • /
    • 제21권9호
    • /
    • pp.77-86
    • /
    • 2005
  • 집중강우로 인한 철도연변 사면의 활동 및 선로의 유실은 철도 운행에 있어 불안정성을 유발하는 요인으로서 이에 대한 적절한 평가기법이 요구된다. 현장조사 결과 강우로 인한 사면의 활동은 사면내 흙의 특성, 강우강도, 사면의 3차원상 형상과 지층의 지질학적 조건과 상관이 있는 것으로 관측되었다. 본 연구에서는 사면의 활동패턴 중 사면내 요부에서 주변 수계로부터 흘러 들어온 표면유출수로 인하여 발생하는 사면의 활동을 대상으로 하고 있다. 표면유출수의 발생은 Philip 공식에서 계산된 침투율과 강우강도의 비교를 통해서 판정되었다. 표면유출수의 심도를 계산하기 위하여 합리식과 Manning 공식을 적용하였으며, 심도별 사면의 안전율을 구하기 위하여 Iverson 모텔을 수정하여 적용하였다. 수정된 Iverson 모델의 적용에 있어 표면 유출수의 심도를 고려하므로 최대 동수경사가 1 이상의 경우를 고려하였다.

조선 후기 석제 앙부일구 분석 (ANALYSIS OF ANGBU-ILGU, A STONE MATERIAL IN THE LATE JOSEON DYNASTY)

  • 김상혁;민병희;김재영
    • 천문학논총
    • /
    • 제37권3호
    • /
    • pp.35-47
    • /
    • 2022
  • This study investigated the stone Angbu-ilgu (scaphe sundial) of the Korea Meteorological Administration (KMA) and the Seoul Museum of History (SMH). Since the first Angbu-ilgu was produced in Korea in 1434 (the year of the reign of King Sejong), Angbu-ilgu has been reproduced with various materials. The upper surface of these two stone Angbu-ilgus symbolizes the horizon. On the hemisphere concave at the center of the horizon, the South Pole, the time line, and the season line are engraved. On the horizon of both the KMA and SMH Angbu-ilgus, the schematic, typeface, and composition of the inscription completely coincide with each other. In this study, it was estimated that the appearance of the KMA Angbu-ilgu, which was damaged at some point previously at least once, was similar to that of the SMH Angbu-ilgu, and this means that it is superficially similar with Treasure No 840, the stone horizontal sundial. In the concave hemisphere of both the stone Angbu-ilgus of the KMA and SMH, there are hour lines and 24 solar-term lines (13 line), and there is an intersection point where these lines meet the horizon, respectively. It can be verified that these intersections of these two Angbu-ilgus can be calculated as having a latitude of +37°39'15". The hour lines of the two stone Angbu-ilgus show that they were made after about 1900.

프로펠러 블레이드의 형상설계 및 CNC 공구경로 생성 (Parametric Shape Design and CNC Tool Path Generation of a Propeller Blade)

  • 정종윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.46-59
    • /
    • 1998
  • This paper presents shape design, surface construction, and cutting path generation for the surface of marine ship propeller blades. A propeller blade should be designed to satisfy performance constraints that include operational speed which impacts rotations per minutes, stresses related to deliverable horst power, and the major length of the marine ship which impacts the blade size and shape characteristics. Primary decision variables that affect efficiency in the design of a marine ship propeller blade are the blade diameter and the expanded area ratio. The blade design resulting from these performance constraints typically consists of sculptured surfaces requiring four or five axis contoured machining. In this approach a standard blade geometry description consisting of blade sections with offset nominal points recorded in an offset table is used. From this table the composite Bezier surface geometry of the blade is created. The control vertices of the Hazier surface patches are determined using a chord length fitting procedure from tile offset table data. Cutter contact points and path intervals are calculated to minimize travel distance and production time while maintaining a cusp height within tolerance limits. Long path intervals typically generate short tool paths at the expense of increased however cusp height. Likewise, a minimal tool path results in a shorter production time. Cutting errors including gouging and under-cut, which are common errors in machining sculptured surfaces, are also identified for both convex and concave surfaces. Propeller blade geometry is conducive to gouging. The result is a minimal error free cutting path for machining propeller blades for marine ships.

  • PDF

트렌치 표면에서의 RIE 식각 손상 회복 (RIE induced damage recovery on trench surface)

  • 이주욱;김상기;배윤규;구진근
    • 한국진공학회지
    • /
    • 제13권3호
    • /
    • pp.120-126
    • /
    • 2004
  • 트렌치 소자 제조시 게이트 산화막 성장과 내압 강하의 원인이 되는 식각손상 회복과 코너 영역의 구조를 개선하기 위해 수소 분위기 열처리를 하였다. 열처리시 수소 원자에 의한 환원 반응을 이용하여 표면 에너지가 높은 코너 영역에서는 원자들의 이동에 의한 결정면 재배열, 산화막 측벽에서의 실리콘 원자 적층, 표면 거칠기의 개선 효과 등을 전자현미경 관찰을 통해 확인하였다. 실리콘 원자의 이동을 방해하는 식각 후 잔류 산화막을 수소 가스의 환원성 분위기에서 열처리함으로써 표면 에너지를 낮추는 방향으로 원자의 이동이 일어나 concave 영역, 즉 트렌치 bottom corner에서는 (111), (311) 결정면 재분포 현상이 일어남을 확인할 수 있었다. 또한 convex comer에서의 원자 이동으로 인해 corner 영역에서는 (1111) 면의 step 들이 존재하게 되고 원자 이동에 의해 산화막 측벽에 이르러 이동된 원자의 적층이 일어나며, 이는 열처리시 표면 손상 회복이 원자이동에 의함을 나타낸다. 이러한 적층은 표면 상태가 깨끗할수록 정합성을 띄어 기판과 일치하는 에피 특성을 나타내고 열처리 온도가 높을수록 표면 세정 효과가 커져 식각손상 회복효과가 커지며, 이를 이용하여 이후의 산화막 성장시 균일한 두께를 코너영역에서 얻을 수 있었다

Development Plan for the First GMT ASM Reference Body

  • Yang, Ho-Soon;Oh, Chang-Jin;Biasi, Roberto;Gallieni, Daniele
    • 천문학회보
    • /
    • 제46권2호
    • /
    • pp.76.3-77
    • /
    • 2021
  • GMT secondary mirror system consists of 7 segmented adaptive mirrors. Each segment consists of a thin shell mirror, actuators and a reference body. The thin shell has a few millimeters of thickness so that it can be easily bent by push and pull force of actuators to compensate the wavefront disturbance of light due to air turbulence. The one end of actuator is supported by the reference body and the other end is adapted to this thin shell. One of critical role of the reference body is to provide the reference surface for the thin shell actuators. Therefore, the reference body is one of key components to succeed in development of GMT ASM. Recently, Korea Research Institute of Standards and Science (KRISS) and University of Arizona (UA) has signed a contract that they will cooperate to develop the first set of off-axis reference body for GMT ASM. This project started August 2021 and will be finished in Dec. 2022. The reference body has total 675 holes to accommodate actuators and 144 pockets for lightweighting. The rear surface has a curved rib shape with radius of curvature of 4387 mm with offset of 128.32mm. Since this reference body is placed just above the thin shell so that the front surface shape needs to be close to that of thin shell. The front surface has a concave off-axis asphere, of which radius of curvature is 4165.99 mm and off-axis distance is about 1088 mm. The material is Zerodur CTE class 1 (CTE=0.05 ppm/oC) from SCHOTT. All the actuator holes and pockets are machined normal to the front surface. It is a very complex challenging optical elements that involves sophisticated machining process as well as accurate metrology. After finishing the fabrication of reference body in KRISS, it will be shipped to UA for final touches and finally sent to Adoptica in Italy, in early 2023. This paper presets the development plan for the GMT ASM Reference Body and relevant fabrication and metrology plans.

  • PDF

Development of Automatic Filet Welding Torch System with High Speed Rotating Arc Sensor

  • Lee, W.K.;Lee, G.Y.;Kim, J.H.;Kim, S.B.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.94.1-94
    • /
    • 2001
  • Arc sensor gives important groove information during welding. Automatic seam tracking control system with arc sensor has significant characteristics such that bead formation is given as decentralization of penetration and formation of concave bead profile and that a turning point of transverse weaving with constant arc length control is decided whether or not torch height reaches to a specified setting level. Furthermore, the rotating action of the arc prevents hanging of weld bead and forms flat bead surface under high speed welding condition. The variation of groove and deposition area can be detected from the trace of weaving. The area and width of weaving trace has close correlation with the area of groove and deposition. In this paper, main object of this system is to realize an adaptive microprocessor based controller ...

  • PDF

Modeling Cutter Swept Angle at Cornering Cut

  • Chan, K.W.;Choy, H.S.
    • International Journal of CAD/CAM
    • /
    • 제3권1_2호
    • /
    • pp.1-12
    • /
    • 2003
  • When milling concave corners, cutter load increases momentarily and fluctuates severely due to concentration and uneven distribution of material stock. This abrupt change of cutter load produces undesirable machining results such as wavy machined surface and cutter breakage. An important factor for studying cutter load in 2.5D pocket milling is the instantaneous Radial Depth of Cut (RDC). However, previous work on RDC under different corner-cutting conditions is lacking. In this different corner shapes. In our work, we express RDC mathematically in terms of the instantaneous cutter engage angle which is defined as Cutter Swept Angle (CSA). An analytical approach for modeling CSA is explained. Finally, examples are shown to demonstrate that the proposed CSA modeling method can give an accurate prediction of cutter load pattern at cornering cut.

실리카 광섬유 코어의 곡률단면 형성 최적화 방법 (Optimum formation method of curved core cross section of silica fiber)

  • 김세민;김승환;이승훈;황석현;김미경;황보창권;김경헌
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2009년도 창립 20주년기념 특별학술발표회
    • /
    • pp.288-289
    • /
    • 2009
  • We report an optimum fabrication condition for formation of concave lens shaped core cross-section of silica single-mode fibers with hydrofluoric (HF) acid solutions and arc discharge. A desired depth of curved cross-section of the silica fiber core and its surface smoothness were obtained with optimized concentration of the HF solution, etching time, and arc discharge condition.

  • PDF

A Study on the Variation of the Fretting Wear Mechanisms under Elastically Deformable Contacts

  • Lee, Young-Ho;Kim, Hyung-Kyu
    • KSTLE International Journal
    • /
    • 제10권1_2호
    • /
    • pp.27-32
    • /
    • 2009
  • In this study, fretting wear tests of nuclear fuel rods have been performed by using two kinds of spacer grid springs with a concave and a convex shape in room temperature dry and distilled water conditions. The objectives were to examine the variation of the wear mechanism with increasing fretting cycles and to evaluate the difference of the wear debris detachment behavior at each test environment. From the test results, the wear volume of each spring condition increased with increasing fretting cycles regardless of the test environments. However, the wear rate did not show a regular tendency and apparently changed with increasing fretting cycles. This is because the formation of the wear particle layer and/or the variation of the contact condition between the fuel rod and spring surfaces could affect a critical plastic deformation for detaching the wear debris. Based on the test results, the relationship between the wear behavior of each spring shape and test environment condition, and the variation of the surface characteristics are discussed in detail.