• Title/Summary/Keyword: Computing Resource

Search Result 854, Processing Time 0.032 seconds

Design of Resource Grouping for Desktop Grid Computing and Its Application Methods to Fault-Tolerance (데스크톱 그리드 컴퓨팅을 위한 자원 그룹핑 설계 및 결함포용으로의 적용 방안)

  • Shon, Jin Gon;Gil, Joon-Min
    • Journal of Digital Contents Society
    • /
    • v.14 no.2
    • /
    • pp.171-178
    • /
    • 2013
  • Desktop grid computing is the computing paradigm that can execute large-scale computing jobs using the desktop resources with heterogeneity and volatility. However, such the computing environment can not guarantee the stability and reliability of task execution because the desktop resources with different performance can freely participate and leave in task execution. Therefore, in this paper, we design resource grouping scheme using k-means clustering algorithm with an aim to provide desktop grid computing with the stability and reliability of task execution. Moreover, we conduct resource grouping using the execution log data of actual desktop grid systems and present application methods of desktop resource groups to fault-tolerance.

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.5
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

Decentralized Broker-BBsed Model for Resource Management in Grid Computing Environment (그리드 컴퓨팅 환경에서의 자원 관리를 위한 분산화된 브로커 기반 모델)

  • Ma, Yong-Beom;Lee, Jong-Sik
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2007
  • Resource management in grid computing environment is essential for integration and interaction among heterogeneous resources. This paper discusses resource management methods of centralized and decentralized broker-based modeling for solving complex problems of resource management and presents design and development of the decentralized broker-based resource management modeling in grid computing environment. This model comprises a global resource broker and a local resource broker, and we derive reduction of communication and functional dispersion of Job management using a local resource broker. The simulation experiment shows the improvement of resource utilization and average response time and proves that this model improves utilization of resources and replies to user requests promptly.

  • PDF

Dynamic Scheduling Method for Cooperative Resource Sharing in Mobile Cloud Computing Environments

  • Kwon, Kyunglag;Park, Hansaem;Jung, Sungwoo;Lee, Jeungmin;Chung, In-Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.484-503
    • /
    • 2016
  • Mobile cloud computing has recently become a new paradigm for the utilization of a variety of shared mobile resources via wireless network environments. However, due to the inherent characteristics of mobile devices, a limited battery life, and a network access requirement, it is necessary for mobile servers to provide a dynamic approach for managing mobile resources efficiently in mobile cloud computing environments. Since on-demand job requests occur frequently and the number of mobile devices is drastically increased in mobile cloud computing environments, a different mobile resource management method is required to maximize the computational power. In this paper, we therefore propose a cooperative, mobile resource sharing method that considers both the inherent properties and the number of mobile devices in mobile cloud environments. The proposed method is composed of four main components: mobile resource monitor, job handler, resource handler, and results consolidator. In contrast with conventional mobile cloud computing, each mobile device under the proposed method can be either a service consumer or a service provider in the cloud. Even though each device is resource-poor when a job is processed independently, the computational power is dramatically increased under the proposed method, as the devices cooperate simultaneously for a job. Therefore, the mobile computing power throughput is dynamically increased, while the computation time for a given job is reduced. We conduct case-based experiments to validate the proposed method, whereby the feasibility of the method for the purpose of cooperative computation is shown.

Grid Scheduling Model with Resource Performance Measurement in Computational Grid Computing (계산 그리드 컴퓨팅에서의 자원 성능 측정을 통한 그리드 스케줄링 모델)

  • Park, Da-Hye;Lee, Jong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.87-94
    • /
    • 2006
  • Grid computing has been developed for resolving large-scaled computing problems through geographically distributed heterogeneous resources. In order to guarantee effective and reliable job processing, grid computing needs resource scheduling model. So, we propose a resource performance measurement scheduling model which allocates job to resources with resource performance measurement. We assess resources using resource performance measurement formula, and implement the resource performance measurement scheduling model in DEVS simulation modeling.

  • PDF

Resource Demand and Price Prediction-based Grid Resource Transaction Model (자원 요구량과 가격 예측 기반의 그리드 자원 거래 모델)

  • Kim, In-Kee;Lee, Jong-Sik
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.12 no.5
    • /
    • pp.275-285
    • /
    • 2006
  • This paper proposes an efficient market mechanism-based resource transaction model for grid computing. This model predicts the next resource demand of users and suggests reasonable resource price for both of customers and resource providers. This model increases resource transactions between customers and resource providers and reduces the average of transaction response times from resource providers. For prediction accuracy improvement of resource demands and suggestion of reasonable resource price, this model introduces a statistics-based prediction model and a price decision model of microeconomics. For performance evaluating, this paper measures resource demand prediction accuracy rate of users, response time of resource transaction, the number of resource transactions, and resource utilization. With 87.45% of reliable prediction accuracy, this model works on the less 72.39% of response time than existing resource transaction models in a grid computing environment. The number of transactions and the resource utilization increase up to 162.56% and up to 230%, respectively.

Resource Allocation and Offloading Decisions of D2D Collaborative UAV-assisted MEC Systems

  • Jie Lu;Wenjiang Feng;Dan Pu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.1
    • /
    • pp.211-232
    • /
    • 2024
  • In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.

An Adaptive Workflow Scheduling Scheme Based on an Estimated Data Processing Rate for Next Generation Sequencing in Cloud Computing

  • Kim, Byungsang;Youn, Chan-Hyun;Park, Yong-Sung;Lee, Yonggyu;Choi, Wan
    • Journal of Information Processing Systems
    • /
    • v.8 no.4
    • /
    • pp.555-566
    • /
    • 2012
  • The cloud environment makes it possible to analyze large data sets in a scalable computing infrastructure. In the bioinformatics field, the applications are composed of the complex workflow tasks, which require huge data storage as well as a computing-intensive parallel workload. Many approaches have been introduced in distributed solutions. However, they focus on static resource provisioning with a batch-processing scheme in a local computing farm and data storage. In the case of a large-scale workflow system, it is inevitable and valuable to outsource the entire or a part of their tasks to public clouds for reducing resource costs. The problems, however, occurred at the transfer time for huge dataset as well as there being an unbalanced completion time of different problem sizes. In this paper, we propose an adaptive resource-provisioning scheme that includes run-time data distribution and collection services for hiding the data transfer time. The proposed adaptive resource-provisioning scheme optimizes the allocation ratio of computing elements to the different datasets in order to minimize the total makespan under resource constraints. We conducted the experiments with a well-known sequence alignment algorithm and the results showed that the proposed scheme is efficient for the cloud environment.

Construction of Open Resource Registration System in PC Grid Computing Environments (PC 그리드 컴퓨팅 환경에서 오픈 자원 등록 시스템 구축)

  • Yoon, Junweon;Choi, Jangwon;Lee, Pillwoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.221-225
    • /
    • 2007
  • PC grid computing is a paradigm of distributed computing that are collection the idle resource of numerous PCs to perform large-scale. As this way, created high performance resources use a large-scale computational application, also this paradigm studied new measurement in place of application using super computer. This paper suggests ORRS(Open Resource Registration System) that selects a adequate resource what application client want. This system register descriptions of resource that provide group, such as organization, party, team, PCs idle resource in open archive. Also, this system provide PC grid computing environment which is select suitable resource actively what application client want.

  • PDF

Semantic Cloud Resource Recommendation Using Cluster Analysis in Hybrid Cloud Computing Environment (군집분석을 이용한 하이브리드 클라우드 컴퓨팅 환경에서의 시맨틱 클라우드 자원 추천 서비스 기법)

  • Ahn, Younsun;Kim, Yoonhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.4 no.9
    • /
    • pp.283-288
    • /
    • 2015
  • Scientists gain benefits from on-demand scalable resource provisioning, and various computing environments by using cloud computing resources for their applications. However, many cloud computing service providers offer their cloud resources according to their own policies. The descriptions of resource specification are diverse among vendors. Subsequently, it becomes difficult to find suitable cloud resources according to the characteristics of an application. Due to limited understanding of resource availability, scientists tend to choose resources used in previous experiments or over-performed resources without considering the characteristics of their applications. The need for standardized notations on diverse cloud resources without the constraints of complicated specification given by providers leads to active studies on intercloud to support interoperability in hybrid cloud environments. However, projects related to intercloud studies are limited as they are short of expertise in application characteristics. We define an intercloud resource classification and propose semantic resource recommendation based on statistical analysis to provide semantic cloud resource services for an application in hybrid cloud computing environments. The scheme proves benefits on resource availability and cost-efficiency with choosing semantically similar cloud resources using cluster analysis while considering application characteristics.