• Title/Summary/Keyword: Computing Platform

Search Result 864, Processing Time 0.026 seconds

Meta's Metaverse Platform Design in the Pre-launch and Ignition Life Stage

  • Song, Minzheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.121-131
    • /
    • 2022
  • We look at the initial stage of Meta (previous Facebook)'s new metaverse platform and investigate its platform design in pre-launch and ignition life stage. From the Rocket Model (RM)'s theoretical logic, the results reveal that Meta firstly focuses on investing in key content developers by acquiring virtual reality (VR), video, music content firms and offering production support platform of the augmented reality (AR) content, 'Spark AR' last three years (2019~2021) for attracting high-potential developers and users. In terms of three matching criteria, Meta develops an Artificial Intelligence (AI) powered translation software, partners with Microsoft (MS) for cloud computing and AI, and develops an AI platform for realistic avatar, MyoSuite. In 'connect' function, Meta curates the game concept submitted by game developers, welcomes other game and SNS based metaverse apps, and expands Horizon Worlds (HW) on VR devices to PCs and mobile devices. In 'transact' function, Meta offers 'HW Creator Funding' program for metaverse, launches the first commercialized Meta Avatar Store on Meta's conventional SNS and Messaging apps by inviting all fashion creators to design and sell clothing in this store. Mata also launches an initial test of non-fungible token (NFT) display on Instagram and expands it to Facebook in the US. Lastly, regarding optimization, especially in the face of recent data privacy issues that have adversely affected corporate key performance indicators (KPIs), Meta assures not to collect any new data and to make its privacy policy easier to understand and update its terms of service more user friendly.

A Study on Workbench-based Dynamic Service De-sign and Construction of Computational Science Engineering Platform (계산과학공학 플랫폼의 워크벤치 기반 동적 서비스 설계 및 구축에 관한 연구)

  • Kwon, Yejin;Jeon, Inho;Ma, Jin;Lee, Sik;Cho, Kum Won;Seo, Jerry
    • Journal of Internet Computing and Services
    • /
    • v.19 no.3
    • /
    • pp.57-66
    • /
    • 2018
  • EDISON ( EDucation-research Integration through Simulation On the Net) is a web simulation service based on cloud compu-ting. EDISON provides that web service and provide analysis result to users through pre-built infrastructure and various calcu-lation nodes computational science engineering problems that are difficult or impossible to analysis as user's personal resources to users. As a result, a simulation execution environment is provided in a web portal environment so that EDISON can be ac-cessed regardless of a user's device or operating system to perform computational science engineering analysis simulation. The purpose of this research is to design and construct a workbench based real - time dynamic service to provide an integrat-ed user interface to the EDSION system, which is a computational science engineering simulation and analysis platform, which is currently provided to users. We also devised a workbench-based user simulation service environment configuration. That has a user interface that is similar to the computational science engineering simulation software environment used locally. It can configure a dynamic web environment such as various analyzers, preprocessors, and simulation software. In order to provide these web services, the service required by the user is configured in portlet units, and as a result, the simulation service using the workbench is constructed.

Multi-platform Visualization System for Earth Environment Data (지구환경 데이터를 위한 멀티플랫폼 가시화 시스템)

  • Jeong, Seokcheol;Jung, Seowon;Kim, Jongyong;Park, Sanghun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.21 no.3
    • /
    • pp.36-45
    • /
    • 2015
  • It is important subject of research in engineering and natural science field that creating continuing high-definition image from very large volume data. The necessity of software that helps analyze useful information in data has improved by effectively showing visual image information of high resolution data with visualization technique. In this paper, we designed multi-platform visualization system based on client-server to analyze and express earth environment data effectively constructed with observation and prediction. The visualization server comprised of cluster transfers data to clients through parallel/distributed computing, and the client is developed to be operated in various platform and visualize data. In addition, we aim user-friendly program through multi-touch, sensor and have made realistic simulation image with image-based lighting technique.

Crowdsourcing Software Development: Task Assignment Using PDDL Artificial Intelligence Planning

  • Tunio, Muhammad Zahid;Luo, Haiyong;Wang, Cong;Zhao, Fang;Shao, Wenhua;Pathan, Zulfiqar Hussain
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.129-139
    • /
    • 2018
  • The crowdsourcing software development (CSD) is growing rapidly in the open call format in a competitive environment. In CSD, tasks are posted on a web-based CSD platform for CSD workers to compete for the task and win rewards. Task searching and assigning are very important aspects of the CSD environment because tasks posted on different platforms are in hundreds. To search and evaluate a thousand submissions on the platform are very difficult and time-consuming process for both the developer and platform. However, there are many other problems that are affecting CSD quality and reliability of CSD workers to assign the task which include the required knowledge, large participation, time complexity and incentive motivations. In order to attract the right person for the right task, the execution of action plans will help the CSD platform as well the CSD worker for the best matching with their tasks. This study formalized the task assignment method by utilizing different situations in a CSD competition-based environment in artificial intelligence (AI) planning. The results from this study suggested that assigning the task has many challenges whenever there are undefined conditions, especially in a competitive environment. Our main focus is to evaluate the AI automated planning to provide the best possible solution to matching the CSD worker with their personality type.

Global Internet Computing Environment based on Java (자바를 기반으로 한 글로벌 인터넷 컴퓨팅 환경)

  • Kim, Hui-Cheol;Sin, Pil-Seop;Park, Yeong-Jin;Lee, Yong-Du
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2320-2331
    • /
    • 1999
  • Over the Internet, in order to utilize a collection of idle computers as a parallel computing platform, we propose a new scheme called GICE(Global Internet Computing Environment). GICE is motivated to obtain high programmability, efficient support for heterogeneous computing resources, system scalability, and finally high performance. The programming model of GICE is based on a single address space. GICE is featured with a Java based programming environment, a dynamic resource management scheme, and efficient parallel task scheduling and execution mechanisms. Based on a prototype implementation of GICE, we address the concept, feasibility, complexity and performance of Internet computing.

  • PDF

Study of Danger-Theory-Based Intrusion Detection Technology in Virtual Machines of Cloud Computing Environment

  • Zhang, Ruirui;Xiao, Xin
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.239-251
    • /
    • 2018
  • In existing cloud services, information security and privacy concerns have been worried, and have become one of the major factors that hinder the popularization and promotion of cloud computing. As the cloud computing infrastructure, the security of virtual machine systems is very important. This paper presents an immune-inspired intrusion detection model in virtual machines of cloud computing environment, denoted I-VMIDS, to ensure the safety of user-level applications in client virtual machines. The model extracts system call sequences of programs, abstracts them into antigens, fuses environmental information of client virtual machines into danger signals, and implements intrusion detection by immune mechanisms. The model is capable of detecting attacks on processes which are statically tampered, and is able to detect attacks on processes which are dynamically running. Therefore, the model supports high real time. During the detection process, the model introduces information monitoring mechanism to supervise intrusion detection program, which ensures the authenticity of the test data. Experimental results show that the model does not bring much spending to the virtual machine system, and achieves good detection performance. It is feasible to apply I-VMIDS to the cloud computing platform.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 1

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.297-316
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Service ORiented Computing EnviRonment (SORCER) for deterministic global and stochastic aircraft design optimization: part 2

  • Raghunath, Chaitra;Watson, Layne T.;Jrad, Mohamed;Kapania, Rakesh K.;Kolonay, Raymond M.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.317-334
    • /
    • 2017
  • With rapid growth in the complexity of large scale engineering systems, the application of multidisciplinary analysis and design optimization (MDO) in the engineering design process has garnered much attention. MDO addresses the challenge of integrating several different disciplines into the design process. Primary challenges of MDO include computational expense and poor scalability. The introduction of a distributed, collaborative computational environment results in better utilization of available computational resources, reducing the time to solution, and enhancing scalability. SORCER, a Java-based network-centric computing platform, enables analyses and design studies in a distributed collaborative computing environment. Two different optimization algorithms widely used in multidisciplinary engineering design-VTDIRECT95 and QNSTOP-are implemented on a SORCER grid. VTDIRECT95, a Fortran 95 implementation of D. R. Jones' algorithm DIRECT, is a highly parallelizable derivative-free deterministic global optimization algorithm. QNSTOP is a parallel quasi-Newton algorithm for stochastic optimization problems. The purpose of integrating VTDIRECT95 and QNSTOP into the SORCER framework is to provide load balancing among computational resources, resulting in a dynamically scalable process. Further, the federated computing paradigm implemented by SORCER manages distributed services in real time, thereby significantly speeding up the design process. Part 1 covers SORCER and the algorithms, Part 2 presents results for aircraft panel design with curvilinear stiffeners.

Enhancing Service Availability in Multi-Access Edge Computing with Deep Q-Learning

  • Lusungu Josh Mwasinga;Syed Muhammad Raza;Duc-Tai Le ;Moonseong Kim ;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2023
  • The Multi-access Edge Computing (MEC) paradigm equips network edge telecommunication infrastructure with cloud computing resources. It seeks to transform the edge into an IT services platform for hosting resource-intensive and delay-stringent services for mobile users, thereby significantly enhancing perceived service quality of experience. However, erratic user mobility impedes seamless service continuity as well as satisfying delay-stringent service requirements, especially as users roam farther away from the serving MEC resource, which deteriorates quality of experience. This work proposes a deep reinforcement learning based service mobility management approach for ensuring seamless migration of service instances along user mobility. The proposed approach focuses on the problem of selecting the optimal MEC resource to host services for high mobility users, thereby reducing service migration rejection rate and enhancing service availability. Efficacy of the proposed approach is confirmed through simulation experiments, where results show that on average, the proposed scheme reduces service delay by 8%, task computing time by 36%, and migration rejection rate by more than 90%, when comparing to a baseline scheme.

Efficient Task Distribution for Pig Monitoring Applications Using OpenCL (OpenCL을 이용한 돈사 감시 응용의 효율적인 태스크 분배)

  • Kim, Jinseong;Choi, Younchang;Kim, Jaehak;Chung, Yeonwoo;Chung, Yongwha;Park, Daihee;Kim, Hakjae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.10
    • /
    • pp.407-414
    • /
    • 2017
  • Pig monitoring applications consisting of many tasks can take advantage of inherent data parallelism and enable parallel processing using performance accelerators. In this paper, we propose a task distribution method for pig monitoring applications into a heterogenous computing platform consisting of a multicore-CPU and a manycore-GPU. That is, a parallel program written in OpenCL is developed, and then the most suitable processor is determined based on the measured execution time of each task. The proposed method is simple but very effective, and can be applied to parallelize other applications consisting of many tasks on a heterogeneous computing platform consisting of a CPU and a GPU. Experimental results show that the performance of the proposed task distribution method on three different heterogeneous computing platforms can improve the performance of the typical GPU-only method where every tasks are executed on a deviceGPU by a factor of 1.5, 8.7 and 2.7, respectively.