• Title/Summary/Keyword: Computer-networks

Search Result 5,262, Processing Time 0.036 seconds

A Comparative Study on Data Augmentation Using Generative Models for Robust Solar Irradiance Prediction

  • Jinyeong Oh;Jimin Lee;Daesungjin Kim;Bo-Young Kim;Jihoon Moon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.11
    • /
    • pp.29-42
    • /
    • 2023
  • In this paper, we propose a method to enhance the prediction accuracy of solar irradiance for three major South Korean cities: Seoul, Busan, and Incheon. Our method entails the development of five generative models-vanilla GAN, CTGAN, Copula GAN, WGANGP, and TVAE-to generate independent variables that mimic the patterns of existing training data. To mitigate the bias in model training, we derive values for the dependent variables using random forests and deep neural networks, enriching the training datasets. These datasets are integrated with existing data to form comprehensive solar irradiance prediction models. The experimentation revealed that the augmented datasets led to significantly improved model performance compared to those trained solely on the original data. Specifically, CTGAN showed outstanding results due to its sophisticated mechanism for handling the intricacies of multivariate data relationships, ensuring that the generated data are diverse and closely aligned with the real-world variability of solar irradiance. The proposed method is expected to address the issue of data scarcity by augmenting the training data with high-quality synthetic data, thereby contributing to the operation of solar power systems for sustainable development.

A Predictive Bearing Anomaly Detection Model Using the SWT-SVD Preprocessing Algorithm (SWT-SVD 전처리 알고리즘을 적용한 예측적 베어링 이상탐지 모델)

  • So-hyang Bak;Kwanghoon Pio Kim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.109-121
    • /
    • 2024
  • In various manufacturing processes such as textiles and automobiles, when equipment breaks down or stops, the machines do not work, which leads to time and financial losses for the company. Therefore, it is important to detect equipment abnormalities in advance so that equipment failures can be predicted and repaired before they occur. Most equipment failures are caused by bearing failures, which are essential parts of equipment, and detection bearing anomaly is the essence of PHM(Prognostics and Health Management) research. In this paper, we propose a preprocessing algorithm called SWT-SVD, which analyzes vibration signals from bearings and apply it to an anomaly transformer, one of the time series anomaly detection model networks, to implement bearing anomaly detection model. Vibration signals from the bearing manufacturing process contain noise due to the real-time generation of sensor values. To reduce noise in vibration signals, we use the Stationary Wavelet Transform to extract frequency components and perform preprocessing to extract meaningful features through the Singular Value Decomposition algorithm. For experimental validation of the proposed SWT-SVD preprocessing method in the bearing anomaly detection model, we utilize the PHM-2012-Challenge dataset provided by the IEEE PHM Conference. The experimental results demonstrate significant performance with an accuracy of 0.98 and an F1-Score of 0.97. Additionally, to substantiate performance improvement, we conduct a comparative analysis with previous studies, confirming that the proposed preprocessing method outperforms previous preprocessing methods in terms of performance.

Enhancing A Neural-Network-based ISP Model through Positional Encoding (위치 정보 인코딩 기반 ISP 신경망 성능 개선)

  • DaeYeon Kim;Woohyeok Kim;Sunghyun Cho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.30 no.3
    • /
    • pp.81-86
    • /
    • 2024
  • The Image Signal Processor (ISP) converts RAW images captured by the camera sensor into user-preferred sRGB images. While RAW images contain more meaningful information for image processing than sRGB images, RAW images are rarely shared due to their large sizes. Moreover, the actual ISP process of a camera is not disclosed, making it difficult to model the inverse process. Consequently, research on learning the conversion between sRGB and RAW has been conducted. Recently, the ParamISP[1] model, which directly incorporates camera parameters (exposure time, sensitivity, aperture size, and focal length) to mimic the operations of a real camera ISP, has been proposed by advancing the simple network structures. However, existing studies, including ParamISP[1], have limitations in modeling the camera ISP as they do not consider the degradation caused by lens shading, optical aberration, and lens distortion, which limits the restoration performance. This study introduces Positional Encoding to enable the camera ISP neural network to better handle degradations caused by lens. The proposed positional encoding method is suitable for camera ISP neural networks that learn by dividing the image into patches. By reflecting the spatial context of the image, it allows for more precise image restoration compared to existing models.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.9
    • /
    • pp.1-7
    • /
    • 2024
  • In this paper, we proposes a Convolutional Neural Networks(CNN) equipped with Batch Normalization(BN) for handwritten digit recognition training the MNIST dataset. Aiming to surpass the performance of LeNet-5 by LeCun et al., a 6-layer neural network was designed. The proposed model processes 28×28 pixel images through convolution, Max Pooling, and Fully connected layers, with the batch normalization to improve learning stability and performance. The experiment utilized 60,000 training images and 10,000 test images, applying the Momentum optimization algorithm. The model configuration used 30 filters with a 5×5 filter size, padding 0, stride 1, and ReLU as activation function. The training process was set with a mini-batch size of 100, 20 epochs in total, and a learning rate of 0.1. As a result, the proposed model achieved a test accuracy of 99.22%, surpassing LeNet-5's 99.05%, and recorded an F1-score of 0.9919, demonstrating the model's performance. Moreover, the 6-layer model proposed in this paper emphasizes model efficiency with a simpler structure compared to LeCun et al.'s LeNet-5 (7-layer model) and the model proposed by Ji, Chun and Kim (10-layer model). The results of this study show potential for application in real industrial applications such as AI vision inspection systems. It is expected to be effectively applied in smart factories, particularly in determining the defective status of parts.

The Influence of Online Social Networking on Individual Virtual Competence and Task Performance in Organizations (온라인 네트워킹 활동이 가상협업 역량 및 업무성과에 미치는 영향)

  • Suh, A-Young;Shin, Kyung-Shik
    • Asia pacific journal of information systems
    • /
    • v.22 no.2
    • /
    • pp.39-69
    • /
    • 2012
  • With the advent of communication technologies including electronic collaborative tools and conferencing systems provided over the Internet, virtual collaboration is becoming increasingly common in organizations. Virtual collaboration refers to an environment in which the people working together are interdependent in their tasks, share responsibility for outcomes, are geographically dispersed, and rely on mediated rather than face-to face, communication to produce an outcome. Research suggests that new sets of individual skill, knowledge, and ability (SKAs) are required to perform effectively in today's virtualized workplace, which is labeled as individual virtual competence. It is also argued that use of online social networking sites may influence not only individuals' daily lives but also their capability to manage their work-related relationships in organizations, which in turn leads to better performance. The existing research regarding (1) the relationship between virtual competence and task performance and (2) the relationship between online networking and task performance has been conducted based on different theoretical perspectives so that little is known about how online social networking and virtual competence interplay to predict individuals' task performance. To fill this gap, this study raises the following research questions: (1) What is the individual virtual competence required for better adjustment to the virtual collaboration environment? (2) How does online networking via diverse social network service sites influence individuals' task performance in organizations? (3) How do the joint effects of individual virtual competence and online networking influence task performance? To address these research questions, we first draw on the prior literature and derive four dimensions of individual virtual competence that are related with an individual's self-concept, knowledge and ability. Computer self-efficacy is defined as the extent to which an individual beliefs in his or her ability to use computer technology broadly. Remotework self-efficacy is defined as the extent to which an individual beliefs in his or her ability to work and perform joint tasks with others in virtual settings. Virtual media skill is defined as the degree of confidence of individuals to function in their work role without face-to-face interactions. Virtual social skill is an individual's skill level in using technologies to communicate in virtual settings to their full potential. It should be noted that the concept of virtual social skill is different from the self-efficacy and captures an individual's cognition-based ability to build social relationships with others in virtual settings. Next, we discuss how online networking influences both individual virtual competence and task performance based on the social network theory and the social learning theory. We argue that online networking may enhance individuals' capability in expanding their social networks with low costs. We also argue that online networking may enable individuals to learn the necessary skills regarding how they use technological functions, communicate with others, and share information and make social relations using the technical functions provided by electronic media, consequently increasing individual virtual competence. To examine the relationships among online networking, virtual competence, and task performance, we developed research models (the mediation, interaction, and additive models, respectively) by integrating the social network theory and the social learning theory. Using data from 112 employees of a virtualized company, we tested the proposed research models. The results of analysis partly support the mediation model in that online social networking positively influences individuals' computer self-efficacy, virtual social skill, and virtual media skill, which are key predictors of individuals' task performance. Furthermore, the results of the analysis partly support the interaction model in that the level of remotework self-efficacy moderates the relationship between online social networking and task performance. The results paint a picture of people adjusting to virtual collaboration that constrains and enables their task performance. This study contributes to research and practice. First, we suggest a shift of research focus to the individual level when examining virtual phenomena and theorize that online social networking can enhance individual virtual competence in some aspects. Second, we replicate and advance the prior competence literature by linking each component of virtual competence and objective task performance. The results of this study provide useful insights into how human resource responsibilities assess employees' weakness and strength when they organize virtualized groups or projects. Furthermore, it provides managers with insights into the kinds of development or training programs that they can engage in with their employees to advance their ability to undertake virtual work.

  • PDF

Performance Analysis and Comparison of Stream Ciphers for Secure Sensor Networks (안전한 센서 네트워크를 위한 스트림 암호의 성능 비교 분석)

  • Yun, Min;Na, Hyoung-Jun;Lee, Mun-Kyu;Park, Kun-Soo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.3-16
    • /
    • 2008
  • A Wireless Sensor Network (WSN for short) is a wireless network consisting of distributed small devices which are called sensor nodes or motes. Recently, there has been an extensive research on WSN and also on its security. For secure storage and secure transmission of the sensed information, sensor nodes should be equipped with cryptographic algorithms. Moreover, these algorithms should be efficiently implemented since sensor nodes are highly resource-constrained devices. There are already some existing algorithms applicable to sensor nodes, including public key ciphers such as TinyECC and standard block ciphers such as AES. Stream ciphers, however, are still to be analyzed, since they were only recently standardized in the eSTREAM project. In this paper, we implement over the MicaZ platform nine software-based stream ciphers out of the ten in the second and final phases of the eSTREAM project, and we evaluate their performance. Especially, we apply several optimization techniques to six ciphers including SOSEMANUK, Salsa20 and Rabbit, which have survived after the final phase of the eSTREAM project. We also present the implementation results of hardware-oriented stream ciphers and AES-CFB fur reference. According to our experiment, the encryption speeds of these software-based stream ciphers are in the range of 31-406Kbps, thus most of these ciphers are fairly acceptable fur sensor nodes. In particular, the survivors, SOSEMANUK, Salsa20 and Rabbit, show the throughputs of 406Kbps, 176Kbps and 121Kbps using 70KB, 14KB and 22KB of ROM and 2811B, 799B and 755B of RAM, respectively. From the viewpoint of encryption speed, the performances of these ciphers are much better than that of the software-based AES, which shows the speed of 106Kbps.

An Empirical Study on the Determinants of Supply Chain Management Systems Success from Vendor's Perspective (참여자관점에서 공급사슬관리 시스템의 성공에 영향을 미치는 요인에 관한 실증연구)

  • Kang, Sung-Bae;Moon, Tae-Soo;Chung, Yoon
    • Asia pacific journal of information systems
    • /
    • v.20 no.3
    • /
    • pp.139-166
    • /
    • 2010
  • The supply chain management (SCM) systems have emerged as strong managerial tools for manufacturing firms in enhancing competitive strength. Despite of large investments in the SCM systems, many companies are not fully realizing the promised benefits from the systems. A review of literature on adoption, implementation and success factor of IOS (inter-organization systems), EDI (electronic data interchange) systems, shows that this issue has been examined from multiple theoretic perspectives. And many researchers have attempted to identify the factors which influence the success of system implementation. However, the existing studies have two drawbacks in revealing the determinants of systems implementation success. First, previous researches raise questions as to the appropriateness of research subjects selected. Most SCM systems are operating in the form of private industrial networks, where the participants of the systems consist of two distinct groups: focus companies and vendors. The focus companies are the primary actors in developing and operating the systems, while vendors are passive participants which are connected to the system in order to supply raw materials and parts to the focus companies. Under the circumstance, there are three ways in selecting the research subjects; focus companies only, vendors only, or two parties grouped together. It is hard to find researches that use the focus companies exclusively as the subjects probably due to the insufficient sample size for statistic analysis. Most researches have been conducted using the data collected from both groups. We argue that the SCM success factors cannot be correctly indentified in this case. The focus companies and the vendors are in different positions in many areas regarding the system implementation: firm size, managerial resources, bargaining power, organizational maturity, and etc. There are no obvious reasons to believe that the success factors of the two groups are identical. Grouping the two groups also raises questions on measuring the system success. The benefits from utilizing the systems may not be commonly distributed to the two groups. One group's benefits might be realized at the expenses of the other group considering the situation where vendors participating in SCM systems are under continuous pressures from the focus companies with respect to prices, quality, and delivery time. Therefore, by combining the system outcomes of both groups we cannot measure the system benefits obtained by each group correctly. Second, the measures of system success adopted in the previous researches have shortcoming in measuring the SCM success. User satisfaction, system utilization, and user attitudes toward the systems are most commonly used success measures in the existing studies. These measures have been developed as proxy variables in the studies of decision support systems (DSS) where the contribution of the systems to the organization performance is very difficult to measure. Unlike the DSS, the SCM systems have more specific goals, such as cost saving, inventory reduction, quality improvement, rapid time, and higher customer service. We maintain that more specific measures can be developed instead of proxy variables in order to measure the system benefits correctly. The purpose of this study is to find the determinants of SCM systems success in the perspective of vendor companies. In developing the research model, we have focused on selecting the success factors appropriate for the vendors through reviewing past researches and on developing more accurate success measures. The variables can be classified into following: technological, organizational, and environmental factors on the basis of TOE (Technology-Organization-Environment) framework. The model consists of three independent variables (competition intensity, top management support, and information system maturity), one mediating variable (collaboration), one moderating variable (government support), and a dependent variable (system success). The systems success measures have been developed to reflect the operational benefits of the SCM systems; improvement in planning and analysis capabilities, faster throughput, cost reduction, task integration, and improved product and customer service. The model has been validated using the survey data collected from 122 vendors participating in the SCM systems in Korea. To test for mediation, one should estimate the hierarchical regression analysis on the collaboration. And moderating effect analysis should estimate the moderated multiple regression, examines the effect of the government support. The result shows that information system maturity and top management support are the most important determinants of SCM system success. Supply chain technologies that standardize data formats and enhance information sharing may be adopted by supply chain leader organization because of the influence of focal company in the private industrial networks in order to streamline transactions and improve inter-organization communication. Specially, the need to develop and sustain an information system maturity will provide the focus and purpose to successfully overcome information system obstacles and resistance to innovation diffusion within the supply chain network organization. The support of top management will help focus efforts toward the realization of inter-organizational benefits and lend credibility to functional managers responsible for its implementation. The active involvement, vision, and direction of high level executives provide the impetus needed to sustain the implementation of SCM. The quality of collaboration relationships also is positively related to outcome variable. Collaboration variable is found to have a mediation effect between on influencing factors and implementation success. Higher levels of inter-organizational collaboration behaviors such as shared planning and flexibility in coordinating activities were found to be strongly linked to the vendors trust in the supply chain network. Government support moderates the effect of the IS maturity, competitive intensity, top management support on collaboration and implementation success of SCM. In general, the vendor companies face substantially greater risks in SCM implementation than the larger companies do because of severe constraints on financial and human resources and limited education on SCM systems. Besides resources, Vendors generally lack computer experience and do not have sufficient internal SCM expertise. For these reasons, government supports may establish requirements for firms doing business with the government or provide incentives to adopt, implementation SCM or practices. Government support provides significant improvements in implementation success of SCM when IS maturity, competitive intensity, top management support and collaboration are low. The environmental characteristic of competition intensity has no direct effect on vendor perspective of SCM system success. But, vendors facing above average competition intensity will have a greater need for changing technology. This suggests that companies trying to implement SCM systems should set up compatible supply chain networks and a high-quality collaboration relationship for implementation and performance.

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.

Clustering Method based on Genre Interest for Cold-Start Problem in Movie Recommendation (영화 추천 시스템의 초기 사용자 문제를 위한 장르 선호 기반의 클러스터링 기법)

  • You, Tithrottanak;Rosli, Ahmad Nurzid;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.57-77
    • /
    • 2013
  • Social media has become one of the most popular media in web and mobile application. In 2011, social networks and blogs are still the top destination of online users, according to a study from Nielsen Company. In their studies, nearly 4 in 5active users visit social network and blog. Social Networks and Blogs sites rule Americans' Internet time, accounting to 23 percent of time spent online. Facebook is the main social network that the U.S internet users spend time more than the other social network services such as Yahoo, Google, AOL Media Network, Twitter, Linked In and so on. In recent trend, most of the companies promote their products in the Facebook by creating the "Facebook Page" that refers to specific product. The "Like" option allows user to subscribed and received updates their interested on from the page. The film makers which produce a lot of films around the world also take part to market and promote their films by exploiting the advantages of using the "Facebook Page". In addition, a great number of streaming service providers allows users to subscribe their service to watch and enjoy movies and TV program. They can instantly watch movies and TV program over the internet to PCs, Macs and TVs. Netflix alone as the world's leading subscription service have more than 30 million streaming members in the United States, Latin America, the United Kingdom and the Nordics. As the matter of facts, a million of movies and TV program with different of genres are offered to the subscriber. In contrast, users need spend a lot time to find the right movies which are related to their interest genre. Recent years there are many researchers who have been propose a method to improve prediction the rating or preference that would give the most related items such as books, music or movies to the garget user or the group of users that have the same interest in the particular items. One of the most popular methods to build recommendation system is traditional Collaborative Filtering (CF). The method compute the similarity of the target user and other users, which then are cluster in the same interest on items according which items that users have been rated. The method then predicts other items from the same group of users to recommend to a group of users. Moreover, There are many items that need to study for suggesting to users such as books, music, movies, news, videos and so on. However, in this paper we only focus on movie as item to recommend to users. In addition, there are many challenges for CF task. Firstly, the "sparsity problem"; it occurs when user information preference is not enough. The recommendation accuracies result is lower compared to the neighbor who composed with a large amount of ratings. The second problem is "cold-start problem"; it occurs whenever new users or items are added into the system, which each has norating or a few rating. For instance, no personalized predictions can be made for a new user without any ratings on the record. In this research we propose a clustering method according to the users' genre interest extracted from social network service (SNS) and user's movies rating information system to solve the "cold-start problem." Our proposed method will clusters the target user together with the other users by combining the user genre interest and the rating information. It is important to realize a huge amount of interesting and useful user's information from Facebook Graph, we can extract information from the "Facebook Page" which "Like" by them. Moreover, we use the Internet Movie Database(IMDb) as the main dataset. The IMDbis online databases that consist of a large amount of information related to movies, TV programs and including actors. This dataset not only used to provide movie information in our Movie Rating Systems, but also as resources to provide movie genre information which extracted from the "Facebook Page". Formerly, the user must login with their Facebook account to login to the Movie Rating System, at the same time our system will collect the genre interest from the "Facebook Page". We conduct many experiments with other methods to see how our method performs and we also compare to the other methods. First, we compared our proposed method in the case of the normal recommendation to see how our system improves the recommendation result. Then we experiment method in case of cold-start problem. Our experiment show that our method is outperform than the other methods. In these two cases of our experimentation, we see that our proposed method produces better result in case both cases.