• Title/Summary/Keyword: Computer-networks

Search Result 5,262, Processing Time 0.032 seconds

Ethereum Phishing Scam Detection based on Graph Embedding and Semi-Supervised Learning (그래프 임베딩 및 준지도 기반의 이더리움 피싱 스캠 탐지)

  • Yoo-Young Cheong;Gyoung-Tae Kim;Dong-Hyuk Im
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.5
    • /
    • pp.165-170
    • /
    • 2023
  • With the recent rise of blockchain technology, cryptocurrency platforms using it are increasing, and currency transactions are being actively conducted. However, crimes that abuse the characteristics of cryptocurrency are also increasing, which is a problem. In particular, phishing scams account for more than a majority of Ethereum cybercrime and are considered a major security threat. Therefore, effective phishing scams detection methods are urgently needed. However, it is difficult to provide sufficient data for supervised learning due to the problem of data imbalance caused by the lack of phishing addresses labeled in the Ethereum participating account address. To address this, this paper proposes a phishing scams detection method that uses both Trans2vec, an effective graph embedding techique considering Ethereum transaction networks, and semi-supervised learning model Tri-training to make the most of not only labeled data but also unlabeled data.

A method of assisting small intestine capsule endoscopic lesion examination using artificial neural network (인공신경망을 이용한 소장 캡슐 내시경 병변 검사 보조 방법)

  • Wang, Tae-su;Kim, Minyoung;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.2-5
    • /
    • 2022
  • Human organs in the body have a complex structure, and in particular, the small intestine is about 7m long, so endoscopy is not easy and the risk of endoscopy is high. Currently, the test is performed with a capsule endoscope, and the test time is very long. The doctor connects the removed storage device to the computer to store the patient's capsule endoscope image and reads it using a program, but the capsule endoscope test results in a long image length, which takes a lot of time to read. In addition, in the case of the small intestine, there are many curves due to villi, so the occlusion area or light and shade of the image are clearly visible during the examination, and there may be cases where lesions and abnormal signs are missed during the examination. In this paper, we provide a method of assisting small intestine capsule endoscopic lesion examination using artificial neural networks to shorten the doctor's image reading time and improve diagnostic reliability.

  • PDF

Development of Basic Practice Cases for Recurrent Neural Networks (순환신경망 기초 실습 사례 개발)

  • Kyeong Hur
    • Journal of Practical Engineering Education
    • /
    • v.14 no.3
    • /
    • pp.491-498
    • /
    • 2022
  • In this paper, as a liberal arts course for non-major students, a case study of recurrent neural network SW practice, which is essential for designing a basic recurrent neural network subject curriculum, was developed. The developed SW practice case focused on understanding the operation principle of the recurrent neural network, and used a spreadsheet to check the entire visualized operation process. The developed recurrent neural network practice case consisted of creating supervised text completion training data, implementing the input layer, hidden layer, state layer (context node), and output layer in sequence, and testing the performance of the recurrent neural network on text data. The recurrent neural network practice case developed in this paper automatically completes words with various numbers of characters. Using the proposed recurrent neural network practice case, it is possible to create an artificial intelligence SW practice case that automatically completes by expanding the maximum number of characters constituting Korean or English words in various ways. Therefore, it can be said that the utilization of this case of basic practice of recurrent neural network is high.

Energy Efficient Routing Protocol in Wireless Sensor Networks with Hole (홀이 있는 WSN 환경에서 에너지 효율적인 라우팅 프로토콜 )

  • Eung-Bum Kim;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.747-754
    • /
    • 2023
  • Energy-efficient routing protocol is an important task in a wireless sensor network that is used for monitoring and control by wirelessly collecting information obtained from sensor nodes deployed in various environments. Various routing techniques have been studied for this, but it is also necessary to consider WSN environments with specific situations and conditions. In particular, due to topographical characteristics or specific obstacles, a hole where sensor nodes are not deployed may exist in most WSN environments, which may result in inefficient routing or routing failures. In this case, the geographical routing-based hall bypass routing method using GPS functions will form the most efficient path, but sensors with GPS functions have the disadvantage of being expensive and consuming energy. Therefore, we would like to find the boundary node of the hole in a WSN environment with holes through minimal sensor function and propose hole bypass routing through boundary line formation.

Performance Comparison of Machine Learning Algorithms for Network Traffic Security in Medical Equipment (의료기기 네트워크 트래픽 보안 관련 머신러닝 알고리즘 성능 비교)

  • Seung Hyoung Ko;Joon Ho Park;Da Woon Wang;Eun Seok Kang;Hyun Wook Han
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.99-108
    • /
    • 2023
  • As the computerization of hospitals becomes more advanced, security issues regarding data generated from various medical devices within hospitals are gradually increasing. For example, because hospital data contains a variety of personal information, attempts to attack it have been continuously made. In order to safely protect data from external attacks, each hospital has formed an internal team to continuously monitor whether the computer network is safely protected. However, there are limits to how humans can monitor attacks that occur on networks within hospitals in real time. Recently, artificial intelligence models have shown excellent performance in detecting outliers. In this paper, an experiment was conducted to verify how well an artificial intelligence model classifies normal and abnormal data in network traffic data generated from medical devices. There are several models used for outlier detection, but among them, Random Forest and Tabnet were used. Tabnet is a deep learning algorithm related to receive and classify structured data. Two algorithms were trained using open traffic network data, and the classification accuracy of the model was measured using test data. As a result, the random forest algorithm showed a classification accuracy of 93%, and Tapnet showed a classification accuracy of 99%. Therefore, it is expected that most outliers that may occur in a hospital network can be detected using an excellent algorithm such as Tabnet.

Enhancing Acute Kidney Injury Prediction through Integration of Drug Features in Intensive Care Units

  • Gabriel D. M. Manalu;Mulomba Mukendi Christian;Songhee You;Hyebong Choi
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.434-442
    • /
    • 2023
  • The relationship between acute kidney injury (AKI) prediction and nephrotoxic drugs, or drugs that adversely affect kidney function, is one that has yet to be explored in the critical care setting. One contributing factor to this gap in research is the limited investigation of drug modalities in the intensive care unit (ICU) context, due to the challenges of processing prescription data into the corresponding drug representations and a lack in the comprehensive understanding of these drug representations. This study addresses this gap by proposing a novel approach that leverages patient prescription data as a modality to improve existing models for AKI prediction. We base our research on Electronic Health Record (EHR) data, extracting the relevant patient prescription information and converting it into the selected drug representation for our research, the extended-connectivity fingerprint (ECFP). Furthermore, we adopt a unique multimodal approach, developing machine learning models and 1D Convolutional Neural Networks (CNN) applied to clinical drug representations, establishing a procedure which has not been used by any previous studies predicting AKI. The findings showcase a notable improvement in AKI prediction through the integration of drug embeddings and other patient cohort features. By using drug features represented as ECFP molecular fingerprints along with common cohort features such as demographics and lab test values, we achieved a considerable improvement in model performance for the AKI prediction task over the baseline model which does not include the drug representations as features, indicating that our distinct approach enhances existing baseline techniques and highlights the relevance of drug data in predicting AKI in the ICU setting.

Generation of virtual mandibular first molar teeth and accuracy analysis using deep convolutional generative adversarial network (심층 합성곱 생성적 적대 신경망을 활용한 하악 제1대구치 가상 치아 생성 및 정확도 분석)

  • Eun-Jeong Bae;Sun-Young Ihm
    • Journal of Technologic Dentistry
    • /
    • v.46 no.2
    • /
    • pp.36-41
    • /
    • 2024
  • Purpose: This study aimed to generate virtual mandibular left first molar teeth using deep convolutional generative adversarial networks (DCGANs) and analyze their matching accuracy with actual tooth morphology to propose a new paradigm for using medical data. Methods: Occlusal surface images of the mandibular left first molar scanned using a dental model scanner were analyzed using DCGANs. Overall, 100 training sets comprising 50 original and 50 background-removed images were created, thus generating 1,000 virtual teeth. These virtual teeth were classified based on the number of cusps and occlusal surface ratio, and subsequently, were analyzed for consistency by expert dental technicians over three rounds of examination. Statistical analysis was conducted using IBM SPSS Statistics ver. 23.0 (IBM), including intraclass correlation coefficient for intrarater reliability, one-way ANOVA, and Tukey's post-hoc analysis. Results: Virtual mandibular left first molars exhibited high consistency in the occlusal surface ratio but varied in other criteria. Moreover, consistency was the highest in the occlusal buccal lingual criteria at 91.9%, whereas discrepancies were observed most in the occusal buccal cusp criteria at 85.5%. Significant differences were observed among all groups (p<0.05). Conclusion: Based on the classification of the virtually generated left mandibular first molar according to several criteria, DCGANs can generate virtual data highly similar to real data. Thus, subsequent research in the dental field, including the development of improved neural network structures, is necessary.

Applications of a Deep Neural Network to Illustration Art Style Design of City Architectural

  • Yue Wang;Jia-Wei Zhao;Ming-Yue Zheng;Ming-Yu Li;Xue Sun;Hao Liu;Zhen Liu
    • Journal of Information Processing Systems
    • /
    • v.20 no.1
    • /
    • pp.53-66
    • /
    • 2024
  • With the continuous advancement of computer technology, deep learning models have emerged as innovative tools in shaping various aspects of architectural design. Recognizing the distinctive perspective of children, which differs significantly from that of adults, this paper contends that conventional standards may not always be the most suitable approach in designing urban structures tailored for children. The primary objective of this study is to leverage neural style networks within the design process, specifically adopting the artistic viewpoint found in children's illustrations. By combining the aesthetic paradigm of urban architecture with inspiration drawn from children's aesthetic preferences, the aim is to unearth more creative and subversive aesthetics that challenge traditional norms. The selected context for exploration is the landmark buildings in Qingdao City, Shandong Province, China. Employing the neural style network, the study uses architectural elements of the chosen buildings as content images while preserving their inherent characteristics. The process involves artistic stylization inspired by classic children's illustrations and images from children's picture books. Acting as a conduit for deep learning technology, the research delves into the prospect of seamlessly integrating architectural design styles with the imaginative world of children's illustrations. The outcomes aim to provide fresh perspectives and effective support for the artistic design of contemporary urban buildings.

Generation of wind turbine blade surface defect dataset based on StyleGAN3 and PBGMs

  • W.R. Li;W.H. Zhao;T.T. Wang;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.129-143
    • /
    • 2024
  • In recent years, with the vigorous development of visual algorithms, a large amount of research has been conducted on blade surface defect detection methods represented by deep learning. Detection methods based on deep learning models must rely on a large and rich dataset. However, the geographical location and working environment of wind turbines makes it difficult to effectively capture images of blade surface defects, which inevitably hinders visual detection. In response to the challenge of collecting a dataset for surface defects that are difficult to obtain, a multi-class blade surface defect generation method based on the StyleGAN3 (Style Generative Adversarial Networks 3) deep learning model and PBGMs (Physics-Based Graphics Models) method has been proposed. Firstly, a small number of real blade surface defect datasets are trained using the adversarial neural network of the StyleGAN3 deep learning model to generate a large number of high-resolution blade surface defect images. Secondly, the generated images are processed through Matting and Resize operations to create defect foreground images. The blade background images produced using PBGM technology are randomly fused, resulting in a diverse and high-resolution blade surface defect dataset with multiple types of backgrounds. Finally, experimental validation has proven that the adoption of this method can generate images with defect characteristics and high resolution, achieving a proportion of over 98.5%. Additionally, utilizing the EISeg annotation method significantly reduces the annotation time to just 1/7 of the time required for traditional methods. These generated images and annotated data of blade surface defects provide robust support for the detection of blade surface defects.

Efficient Intermediate Node Mobility Management Technique Based on Node Departure Learning in Real-time CCN (실시간 CCN에서 노드이탈 학습에 따른 효율적 중간노드 이동관리 기법)

  • Dong-Hyuk Seo;Tae-Wook Kwon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.835-844
    • /
    • 2024
  • The rapid expansion of the real-time streaming industry is driven by the widespread adoption of portable devices and the growth of video platforms. Consequently, the demand for transmitting and receiving large volumes of content has increased, leading to traffic congestion and inefficiency in traditional IP address-based networks. To address these issues, Contents Centric Networking (CCN) is being researched as an alternative. CCN is a network architecture based on content names (what) rather than IP addresses (where), where each node has a cache space called Content Store (CS) to alleviate server bottlenecks and traffic congestion. However, in a CCN environment, the departure of intermediate nodes between clients and servers can lead to packet loss and degradation of service quality. Therefore, research on managing the departure of intermediate nodes in real-time environments is essential. This study proposes a new method for detecting the departure of intermediate nodes through RSSI (Received Signal Strength Indicator) monitoring and for efficiently creating backup paths.