• Title/Summary/Keyword: Computer-aided detection

Search Result 114, Processing Time 0.02 seconds

Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography (질감분석을 이용한 폐결핵의 자동진단)

  • Kim, Dae-Hun;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.185-193
    • /
    • 2011
  • There is no exact standard of detecting pulmonary tuberculosis(TB) in digital image of simple chest radiography. In this study, I experimented on the principal components analysis(PCA) algorithm in the past and suggested six other parameters as identification of TB lesions. The purpose of this study was to develop and test computer aided diagnosis(detection) method for the detection and measurement of pulmonary abnormalities on digital chest radiography. It showed comparatively low recognition diagnosis rate using PCA method, however, six kinds of texture features parameters algorithm showed similar or higher diagnosis rates of pulmonary disease than that of the clinical radiologists. Proposed algorithms using computer-aided of texture analysis can distinguish between areas of abnormality in the chest digital images, differentiate lesions having pulmonary disease. The method could be useful tool for classifying and measuring chest lesions, it would play a major role in radiologist's diagnosis of disease so as to help in pre-reading diagnosis and prevention of pulmonary tuberculosis.

Machine Learning Techniques for Diabetic Retinopathy Detection: A Review

  • Rachna Kumari;Sanjeev Kumar;Sunila Godara
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.4
    • /
    • pp.67-76
    • /
    • 2024
  • Diabetic retinopathy is a threatening complication of diabetes, caused by damaged blood vessels of light sensitive areas of retina. DR leads to total or partial blindness if left untreated. DR does not give any symptoms at early stages so earlier detection of DR is a big challenge for proper treatment of diseases. With advancement of technology various computer-aided diagnostic programs using image processing and machine learning approaches are designed for early detection of DR so that proper treatment can be provided to the patients for preventing its harmful effects. Now a day machine learning techniques are widely applied for image processing. These techniques also provide amazing result in this field also. In this paper we discuss various machine learning and deep learning based techniques developed for automatic detection of Diabetic Retinopathy.

Computationally Efficient Lattice Reduction Aided Detection for MIMO-OFDM Systems under Correlated Fading Channels

  • Liu, Wei;Choi, Kwonhue;Liu, Huaping
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.503-510
    • /
    • 2012
  • We analyze the relationship between channel coherence bandwidth and two complexity-reduced lattice reduction aided detection (LRAD) algorithms for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in correlated fading channels. In both the adaptive LR algorithm and the fixed interval LR algorithm, we exploit the inherent feature of unimodular transformation matrix P that remains the same for the adjacent highly correlated subcarriers. Complexity simulations demonstrate that the adaptive LR algorithm could eliminate up to approximately 90 percent of the multiplications and 95 percent of the divisions of the brute-force LR algorithm with large coherence bandwidth. The results also show that the adaptive algorithm with both optimum and globally suboptimum initial interval settings could significantly reduce the LR complexity, compared with the brute-force LR and fixed interval LR algorithms, while maintaining the system performance.

Detection of Lung Nodule on Temporal Subtraction Images Based on Artificial Neural Network

  • Tokisa, Takumi;Miyake, Noriaki;Maeda, Shinya;Kim, Hyoung-Seop;Tan, Joo Kooi;Ishikawa, Seiji;Murakami, Seiichi;Aoki, Takatoshi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.137-142
    • /
    • 2012
  • The temporal subtraction technique as one of computer aided diagnosis has been introduced in medical fields to enhance the interval changes such as formation of new lesions and changes in existing abnormalities on deference image. With the temporal subtraction technique radiologists can easily detect lung nodules on visual screening. Until now, two-dimensional temporal subtraction imaging technique has been introduced for the clinical test. We have developed new temporal subtraction method to remove the subtraction artifacts which is caused by mis-registration on temporal subtraction images of lungs on MDCT images. In this paper, we propose a new computer aided diagnosis scheme for automatic enhancing the lung nodules from the temporal subtraction of thoracic MDCT images. At first, the candidates regions included nodules are detected by the multiple threshold technique in terms of the pixel value on the temporal subtraction images. Then, a rule-base method and artificial neural networks is utilized to remove the false positives of nodule candidates which is obtained temporal subtraction images. We have applied our detection of lung nodules to 30 thoracic MDCT image sets including lung nodules. With the detection method, satisfactory experimental results are obtained. Some experimental results are shown with discussion.

Effects of Implementing Artificial Intelligence-Based Computer-Aided Detection for Chest Radiographs in Daily Practice on the Rate of Referral to Chest Computed Tomography in Pulmonology Outpatient Clinic

  • Wonju Hong;Eui Jin Hwang;Chang Min Park;Jin Mo Goo
    • Korean Journal of Radiology
    • /
    • v.24 no.9
    • /
    • pp.890-902
    • /
    • 2023
  • Objective: The clinical impact of artificial intelligence-based computer-aided detection (AI-CAD) beyond diagnostic accuracy remains uncertain. We aimed to investigate the influence of the clinical implementation of AI-CAD for chest radiograph (CR) interpretation in daily practice on the rate of referral for chest computed tomography (CT). Materials and Methods: AI-CAD was implemented in clinical practice at the Seoul National University Hospital. CRs obtained from patients who visited the pulmonology outpatient clinics before (January-December 2019) and after (January-December 2020) implementation were included in this study. After implementation, the referring pulmonologist requested CRs with or without AI-CAD analysis. We conducted multivariable logistic regression analyses to evaluate the associations between using AI-CAD and the following study outcomes: the rate of chest CT referral, defined as request and actual acquisition of chest CT within 30 days after CR acquisition, and the CT referral rates separately for subsequent positive and negative CT results. Multivariable analyses included various covariates such as patient age and sex, time of CR acquisition (before versus after AI-CAD implementation), referring pulmonologist, nature of the CR examination (baseline versus follow-up examination), and radiology reports presence at the time of the pulmonology visit. Results: A total of 28546 CRs from 14565 patients (mean age: 67 years; 7130 males) and 25888 CRs from 12929 patients (mean age: 67 years; 6435 males) before and after AI-CAD implementation were included. The use of AI-CAD was independently associated with increased chest CT referrals (odds ratio [OR], 1.33; P = 0.008) and referrals with subsequent negative chest CT results (OR, 1.46; P = 0.005). Meanwhile, referrals with positive chest CT results were not significantly associated with AI-CAD use (OR, 1.08; P = 0.647). Conclusion: The use of AI-CAD for CR interpretation in pulmonology outpatients was independently associated with an increased frequency of overall referrals for chest CT scans and referrals with subsequent negative results.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

A Computer-Aided Diagnosis of Brain Tumors Using a Fine-Tuned YOLO-based Model with Transfer Learning

  • Montalbo, Francis Jesmar P.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4816-4834
    • /
    • 2020
  • This paper proposes transfer learning and fine-tuning techniques for a deep learning model to detect three distinct brain tumors from Magnetic Resonance Imaging (MRI) scans. In this work, the recent YOLOv4 model trained using a collection of 3064 T1-weighted Contrast-Enhanced (CE)-MRI scans that were pre-processed and labeled for the task. This work trained with the partial 29-layer YOLOv4-Tiny and fine-tuned to work optimally and run efficiently in most platforms with reliable performance. With the help of transfer learning, the model had initial leverage to train faster with pre-trained weights from the COCO dataset, generating a robust set of features required for brain tumor detection. The results yielded the highest mean average precision of 93.14%, a 90.34% precision, 88.58% recall, and 89.45% F1-Score outperforming other previous versions of the YOLO detection models and other studies that used bounding box detections for the same task like Faster R-CNN. As concluded, the YOLOv4-Tiny can work efficiently to detect brain tumors automatically at a rapid phase with the help of proper fine-tuning and transfer learning. This work contributes mainly to assist medical experts in the diagnostic process of brain tumors.

Applications of Artificial Intelligence in Mammography from a Development and Validation Perspective (유방촬영술에서 인공지능의 적용: 알고리즘 개발 및 평가 관점)

  • Ki Hwan Kim;Sang Hyup Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.1
    • /
    • pp.12-28
    • /
    • 2021
  • Mammography is the primary imaging modality for breast cancer detection; however, a high level of expertise is needed for its interpretation. To overcome this difficulty, artificial intelligence (AI) algorithms for breast cancer detection have recently been investigated. In this review, we describe the characteristics of AI algorithms compared to conventional computer-aided diagnosis software and share our thoughts on the best methods to develop and validate the algorithms. Additionally, several AI algorithms have introduced for triaging screening mammograms, breast density assessment, and prediction of breast cancer risk have been introduced. Finally, we emphasize the need for interest and guidance from radiologists regarding AI research in mammography, considering the possibility that AI will be introduced shortly into clinical practice.

Fate of pulmonary nodules detected by computer-aided diagnosis and physician review on the computed tomography simulation images for hepatocellular carcinoma

  • Park, Hyojung;Kim, Jin-Sung;Park, Hee Chul;Oh, Dongryul
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.116-124
    • /
    • 2014
  • Purpose: To investigate the frequency and clinical significance of detected incidental lung nodules found on computed tomography (CT) simulation images for hepatocellular carcinoma (HCC) using computer-aided diagnosis (CAD) and a physician review. Materials and Methods: Sixty-seven treatment-$na{\ddot{i}}ve$ HCC patients treated with transcatheter arterial chemoembolization and radiotherapy (RT) were included for the study. Portal phase of simulation CT images was used for CAD analysis and a physician review for lung nodule detection. For automated nodule detection, a commercially available CAD system was used. To assess the performance of lung nodule detection for lung metastasis, the sensitivity, negative predictive value (NPV), and positive predictive value (PPV) were calculated. Results: Forty-six patients had incidental nodules detected by CAD with a total of 109 nodules. Only 20 (18.3%) nodules were considered to be significant nodules by a physician review. The number of significant nodules detected by both of CAD or a physician review was 24 in 9 patients. Lung metastases developed in 11 of 46 patients who had any type of nodule. The sensitivities were 58.3% and 100% based on patient number and on the number of nodules, respectively. The NPVs were 91.4% and 100%, respectively. And the PPVs were 77.8% and 91.7%, respectively. Conclusion: Incidental detection of metastatic nodules was not an uncommon event. From our study, CAD could be applied to CT simulation images allowing for an increase in detection of metastatic nodules.

Vanishing Line based Lane Detection for Augmented Reality-aided Driver Induction

  • Yun, Jeong-Rok;Lee, Dong-Kil;Chun, Sung-Kuk;Hong, Sung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • In this paper, we propose the augmented reality(AR) based driving navigation based on robust lane detection method to dynamic environment changes. The proposed technique uses the detected lane position as a marker which is a key element for enhancing driving information. We propose Symmetrical Local Threshold(SLT) algorithm which is able to robustly detect lane to dynamic illumination environment change such as shadows. In addition, by using Morphology operation and Connected Component Analysis(CCA) algorithm, it is possible to minimize noises in the image, and Region Of Interest(ROI) is defined through region division using a straight line passing through several vanishing points We also propose the augmented reality aided visualization method for Interchange(IC) and driving navigation using reference point detection based on the detected lane coordinates inside and outside the ROI. Validation experiments were carried out to assess the accuracy and robustness of the proposed system in vairous environment changes. The average accuracy of the proposed system in daytime, nighttime, rainy day, and cloudy day is 79.3% on 4600 images. The results of the proposed system for AR based IC and driving navigation were also presented. We are hopeful that the proposed research will open a new discussion on AR based driving navigation platforms, and thus, that such efforts will enrich the autonomous vehicle services in the near future.