• Title/Summary/Keyword: Computer-aided design and computer-aided manufacturing (CAD/CAM)

Search Result 211, Processing Time 0.033 seconds

Digital workflow of single visit full contour monolithic zirconia restoration with CEREC Omnicam intraoral scanner and fast zirconia sintering process (구강스캐너와 급속 지르코니아 소결을 이용한 당일 풀지르코니아 보철수복)

  • Lee, Soo Young
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2016
  • Single visit monolithic restoration can be proceed with digital workflow which consist of intraoral scanning, dental CAD(computer aided design) and restoration milling with CAM(Computer aided manufacturing). While zirconia has more than 900MPa of flexural strength compared with 400MPa for lithium disilicate, shortened fabricating time of lithium disilicate is considered to be a better choice for fabricating single visit full contour monolithic restoration. However, new zirconia materials which are TZI C(Dentsply Sirona) and LUXEN Enamel(Dental Max), new induction heating method of sintering furnace, and new sintering protocols for MoSi2 heating elements sintering furnace offer significantly reduction of full contour monolithic zirconia restoration fabrication time with greater translucency. These new developments lead single visit zirconia restoration in reality.

Survey research to implement a job-based national practical exam for dental technicians (치과기공사의 직무기반 국가 실기시험 실행을 위한 조사 연구)

  • Jae-Hong Kim;Ki-Baek Kim
    • Journal of Technologic Dentistry
    • /
    • v.45 no.4
    • /
    • pp.118-123
    • /
    • 2023
  • Purpose: This study proposes measures needed to implement a job-based national practical exam for dental technicians. Methods: For this study, a survey was conducted targeting 244 currently employed individuals. The current national practical test for dental technicians was divided into directions for the job-based practical test, subjects that need improvement among the current practical test subjects, items that need to be reflected in the practical test evaluation for each subject, and subjects that need to be added to the practical test. It comprised ten questions (Cronbach's α=0.801). Results: The following results were obtained. Satisfaction with the current practical test was lower than average. Future improvement should focus on job-based evaluation. The dental ceramic lab technology subject needs to be reorganized urgently, and the tasks that require evaluation for each subject are different. Moreover, if evaluation subjects are added in the future, the introduction of assessment for dental CAD/CAM (computer-aided design/computer-aided manufacturing) subjects was found to be the most urgent. Conclusion: In this study, the most necessary tasks of the current national practical examination for dental technicians were evaluated and the content needed for future reorganization was investigated. Future tests should be expanded to evaluate critical job areas. Furthermore, it is necessary to open new courses in fields such as CAD/CAM, as they are in high demand in the workplace.

An Integrated System for Computer-Aided Design and Manufacturing of Sculptured Surface (자유곡면 가공을 위한 CAD/CAM 시스템)

  • Kim, K.S.;Choi, Y.H.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.17 no.1
    • /
    • pp.37-49
    • /
    • 1991
  • This report describes an integrated approach to sculptured surface design and manufacture, and a software package for it on a multi-axis NC milling machine. The integrated software consists of four parts : (1) surface fitting procedure for generating the characteristic polyhedron from 3 dimensional CMM data, (2) surface description for generating the mathematical representation of sculptured surfaces. (3) tool path generation for approximating the surface representation into a sequence of linear cutter paths, and (4) tool control for generating the corresponding joint variable values. This integrated approach is generally applicable to sculptured surface manufacturing where multi-axis milling machines are necessary to produce smooth three-dimensional surfaces.

  • PDF

Fabricating retrofit crowns to an existing removable partial denture by CAD-CAM: a case report (CAD-CAM을 이용한 RPD 지대치의 retrofit crown 제작 증례)

  • Hyuksoon Lee;Seong-A Kim;Joo-Hyuk Bang;Sung Yong Kim;Hee-Won Jang;Keun-Woo Lee;Yong-Sang Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.140-145
    • /
    • 2024
  • Removable partial denture wearers are exposed to the risks that remaining teeth get damaged by caries, attritions, erosion, and fracture. In the case of damaged abutment tooth which should fit to Removable partial denture (RPD), the fabrication of surveyed crown is followed by the making of RPD. However, making new denture takes a long time, and needs several processes and costs. Also, patients should get used to new denture. If other abutment teeth and edentulous ridges provide the existing denture with support, retention, and stability, use of existing denture is considered clinically acceptable. In this situation, fabricating retrofit crowns to an existing removable partial denture makes patient use existing denture, cuts costs, and reduces discomfort. In this case, severely worn teeth were restored using monolithic zirconia crown which fit to an existing removable partial denture by CAD-CAM. Moreover, support, retention, and stability of the denture were improved, and both doctor and patient were satisfied with the result.

Microbiological cleaning and disinfection efficacy of a three-stage ultrasonic processing protocol for CAD-CAM implant abutments

  • Gehrke, Peter;Riebe, Oliver;Fischer, Carsten;Weinhold, Octavio;Dhom, Gunter;Sader, Robert;Weigl, Paul
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.5
    • /
    • pp.273-284
    • /
    • 2022
  • PURPOSE. Computer-aided design and manufacturing (CAD-CAM) of implant abutments has been shown to result in surface contamination from site-specific milling and fabrication processes. If not removed, these contaminants can have a potentially adverse effect and may trigger inflammatory responses of the peri-implant tissues. The aim of the present study was to evaluate the bacterial disinfection and cleaning efficacy of ultrasonic reprocessing in approved disinfectants to reduce the microbial load of CAD-CAM abutments. MATERIALS AND METHODS. Four different types of custom implant abutments (total N = 32) with eight specimens in each test group (type I to IV) were CAD-CAM manufactured. In two separate contamination experiments, specimens were contaminated with heparinized sheep blood alone and with heparinized sheep blood and the test bacterium Enterococcus faecium. Abutments in the test group were processed according to a three-stage ultrasonic protocol and assessed qualitatively and quantitatively by determination of residual protein. Ultrasonicated specimens contaminated with sheep blood and E. faecium were additionally eluted and the dilutions were incubated on agar plates for seven days. The determined bacterial counts were expressed as colony-forming units (CFU). RESULTS. Ultrasonic reprocessing resulted in a substantial decrease in residual bacterial protein to less than 80 ㎍ and a reduction in microbiota of more than 7 log levels of CFU for all abutment types, exceeding the effect required for disinfection. CONCLUSION. A three-stage ultrasonic cleaning and disinfection protocol results in effective bacterial decontamination. The procedure is reproducible and complies with the standardized reprocessing and disinfection specifications for one- or two-piece CAD-CAM implant abutments.

Development of Progressive Die CAD/CAM System for Manufacturing Lead Frame, Semiconductor (반도체 리드 프레임 제조를 위한 프로그레시브 금형의 CAD/CAM 시스템 개발)

  • Choi, J.-C.;Kim, B.-M.;Kim, C.;Kim, J.-H.;Kim, C.-B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.230-238
    • /
    • 1999
  • This paper describes a research work of developing computer-aided design of lead frame, semiconductor, with blanking operation which is very precise for progressive working. Approach to the system is based on the knowledge-based rules. Knowledge for the system is formulated from plasticity theories, experimental results and the empirical knowledge of field experts. This system has been written in AutoLISP on the AutoCAD using a personal computer and in I-DEAS Drafting Programming Language on the I-DEAS Master Series Drafting with Workstation, HP9000/715(64) and tool kit on the ESPRIT. Transference of data among AutoCAD, I-DEAS Master Series Drafting, and ESPRIT is accomplished by DXF(drawing exchange format) and IGES(initial graphics exchange specification) methods. This system is composed of six modules, which are input and shape treatment, production feasibility check, strip-layout, die-layout, modelling, and post-processor modules. The system can design process planning and Die design considering several factors and generate NC data automatically according to drawings of die-layout module. As forming process of high precision product and die design system using 2-D geometry recognition are integrated with technology of process planning, die design, and CAE analysis, standardization of die part in die design and process planning of high pression product for semiconductor lead frame is possible to set. Results carried out in each module will provide efficiencies to the designer and the manufacturer of lead frame, semiconductor.

  • PDF

Implant-supported fixed prosthesis restoration of fully edentulous patient using computer-guided implant surgery and immediate loading: A case report (Computer guided implant surgery와 immediate loading을 활용한 무치악 환자의 전악 임플란트 고정성 보철물 수복 증례)

  • Hyeon-Me Sung;Kyoung-Hee Sul;Sun-Woo Kang;Jung-Han Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.62 no.2
    • /
    • pp.131-139
    • /
    • 2024
  • In a edentulous patient, various methods can be employed for prosthetic treatment using implants, such as implant-supported fixed prostheses, overdentures, hybrid prostheses, and implant assisted removable partial denture. In this case, in a patient with moderate to severe chronic periodontitis requiring full arch extractions, implants were strategically placed using computer-guided surgery. In the maxilla, due to inadequate bone quality and quantity leading to insufficient initial stability, delayed loading was implemented, and interim prosthesis was used during the osseointegration period. In the mandible, stable initial stability was achieved, allowing for immediate loading to reduce patient discomfort. Primary stability is considered the most crucial factor for obtaining immediate loading, so a thorough clinical and radiological evaluation of the remaining alveolar bone quantity and quality must be conducted before surgery.

Comparative evaluation of the subtractive and additive manufacturing on the color stability of fixed provisional prosthesis materials (고정성 임시 보철물 재료의 색 안정성에 대한 절삭 및 적층가공법의 비교평가)

  • Lee, Young-Ji;Oh, Sang-Chun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.2
    • /
    • pp.73-80
    • /
    • 2021
  • Purpose: The purpose of this study is to compare the color stability of provisional restorative materials fabricated by subtractive and additive manufacturing. Materials and Methods: PMMA specimens by subtractive manufacturing and conventional method and bis-acryl specimens by additive manufacturing were fabricated each 20. After immersing specimens in the coffee solution and the wine solution, the color was measured as CIE Lab with a colorimeter weekly for 4 weeks. Color change was calculated and data were analyzed with one-way ANOVA and the Tukey multiple comparisons test (α = 0.05). Results: PMMA provisional prosthetic materials by subtractive manufacturing showed superior color stability compared to bis-acryl provisional prosthetic materials by additive manufacturing (P < 0.05), and showed similar color stability to the PMMA provisional prosthetic materials by conventional method (P > 0.05). Conclusion: It is recommended to fabricate provisional restorations by subtractive manufacturing in areas where esthetics is important, such as anterior teeth, and consideration of the color stability will be required when making provisional prosthetic using additive manufacturing.

Marginal Adaptation of Zirconium Dioxide Core according to the Abutment Teeth (지대치 형태에 따른 지르코니아 코어의 변연 적합도)

  • Kim, Ki-Baek;Kim, Seok-Hwan;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.15 no.1
    • /
    • pp.54-59
    • /
    • 2015
  • The present study investigated the influences of various abutment teeth shapes (maxillary right canine, pre-molar, molar) on the marginal adaptation of computer aided design/computer aided manufacturing-fabricated zirconia core. In vitro adaptation of zirconia cores manufactured by three different abutments were evaluated. Thirty zirconia cores were made per each models and the adaptation was evaluated through a silicone replica technique. The measurement of the adaptation was carried out using digital microscope. The mean and standard deviation of each reference point were analyzed using the one-way (ANOVA) and Tukey's honestly significant difference tests (${\alpha}=0.05$). The overall marginal fits of the zirconia cores were as follows: canine: $47.59{\mu}m$, pre-molar: $43.74{\mu}m$, molar: $40.36{\mu}m$. They were no statistically significant differences between groups for adaptation (p>0.05). This confirmed that the type of abutment teeth used does not determine the precision of fit of zirconia core.

Fixed prostheses fabricated by direct metal laser sintering system: case report (Direct metal laser sintering 방식을 이용하여 제작한 다양한 고정성 보철물 수복 증례)

  • Baek, Ju-Won;Shin, Soo-Yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.32 no.3
    • /
    • pp.246-254
    • /
    • 2016
  • Nowadays, 3 dimentional (3D) printing, especially Direct Metal Laser Sintering (DMLS) system is used in dentistry. DMLS system has recently been introduced for fabrication metal framework for metal ceramic crowns to overcome the disadvantages of the casting method and computer aided design/computer aided manufacturing (CAD/CAM) milling system. DMLS system uses a high-temperature laser beam to selectively heat a substructure metal powder based on the CAD data with the framework design. A thin layer of the beamed area becomes fused, and the metal framework is completed by laminating these thin layers. Utilizing DMLS system to fabricate fixed prostheses is expected to achieve free-from shaping without mold and limitations from cutting tools, fabricate prostheses with complex geometry, prevent distortion and fabrication defects that inherent to conventional fabrication methods. The purpose of this case report is to demonstrate various fixed prostheses such as long span fixed prostheses, post to achieve satisfactory results in functional and esthetic aspects.