• Title/Summary/Keyword: Computer-aided Diagnosis

Search Result 162, Processing Time 0.028 seconds

Computer-Aided Diagnosis for Pulmonary Tuberculosis using Texture Features Analysis in Digital Chest Radiography (질감분석을 이용한 폐결핵의 자동진단)

  • Kim, Dae-Hun;Ko, Seong-Jin;Kang, Se-Sik;Kim, Jung-Hoon;Kim, Chang-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.11
    • /
    • pp.185-193
    • /
    • 2011
  • There is no exact standard of detecting pulmonary tuberculosis(TB) in digital image of simple chest radiography. In this study, I experimented on the principal components analysis(PCA) algorithm in the past and suggested six other parameters as identification of TB lesions. The purpose of this study was to develop and test computer aided diagnosis(detection) method for the detection and measurement of pulmonary abnormalities on digital chest radiography. It showed comparatively low recognition diagnosis rate using PCA method, however, six kinds of texture features parameters algorithm showed similar or higher diagnosis rates of pulmonary disease than that of the clinical radiologists. Proposed algorithms using computer-aided of texture analysis can distinguish between areas of abnormality in the chest digital images, differentiate lesions having pulmonary disease. The method could be useful tool for classifying and measuring chest lesions, it would play a major role in radiologist's diagnosis of disease so as to help in pre-reading diagnosis and prevention of pulmonary tuberculosis.

Deep Learning based Computer-aided Diagnosis System for Gastric Lesion using Endoscope (위 내시경 영상을 이용한 병변 진단을 위한 딥러닝 기반 컴퓨터 보조 진단 시스템)

  • Kim, Dong-hyun;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.928-933
    • /
    • 2018
  • Nowadays, gastropathy is a common disease. As endoscopic equipment are developed and used widely, it is possible to provide a large number of endoscopy images. Computer-aided Diagnosis (CADx) systems aim at helping physicians to identify possibly malignant abnormalities more accurately. In this paper, we present a CADx system to detect and classify the abnormalities of gastric lesions which include bleeding, ulcer, neuroendocrine tumor and cancer. We used an Inception module based deep learning model. And we used data augmentation for learning. Our preliminary results demonstrated promising potential for automatically labeled region of interest for endoscopy doctors to focus on abnormal lesions for subsequent targeted biopsy, with Az values of Receiver Operating Characteristic(ROC) curve was 0.83. The proposed CADx system showed reliable performance.

CT Image Analysis of Hepatic Lesions Using CAD ; Fractal Texture Analysis

  • Hwang, Kyung-Hoon;Cheong, Ji-Wook;Lee, Jung-Chul;Lee, Hyung-Ji;Choi, Duck-Joo;Choe, Won-Sick
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.326-327
    • /
    • 2007
  • We investigated whether the CT images of hepatic lesions could be analyzed by computer-aided diagnosis (CAD) tool. We retrospectively reanalyzed 14 liver CT images (10 hepatocellular cancers and 4 benign liver lesions; patients who presented with hepatic masses). The hepatic lesions on CT were segmented by rectangular ROI technique and the morphologic features were extracted and quantitated using fractal texture analysis. The contrast enhancement of hepatic lesions was also quantified and added to the differential diagnosis. The best discriminating function combining the textural features and the values of contrast enhancement of the lesions was created using linear discriminant analysis. Textural feature analysis showed moderate accuracy in the differential diagnosis of hepatic lesions, but statistically insignificant. Combining textural analysis and contrast enhancement value resulted in improved diagnostic accuracy, but further studies are needed.

Texture Descriptor for Texture-Based Image Retrieval and Its Application in Computer-Aided Diagnosis System (질감 기반 이미지 검색을 위한 질감 서술자 및 컴퓨터 조력 진단 시스템의 적용)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.4
    • /
    • pp.34-43
    • /
    • 2010
  • Texture information plays an important role in object recognition and classification. To perform an accurate classification, the texture feature used in the classification must be highly discriminative. This paper presents a novel texture descriptor for texture-based image retrieval and its application in Computer-Aided Diagnosis (CAD) system for Emphysema classification. The texture descriptor is based on the combination of local surrounding neighborhood difference and centralized neighborhood difference and is named as Combined Neighborhood Difference (CND). The local differences of surrounding neighborhood difference and centralized neighborhood difference between pixels are compared and converted into binary codewords. Then binomial factor is assigned to the codewords in order to convert them into high discriminative unique values. The distribution of these unique values is computed and used as the texture feature vectors. The texture classification accuracies using Outex and Brodatz dataset show that CND achieves an average of 92.5%, whereas LBP, LND and Gabor filter achieve 89.3%, 90.7% and 83.6%, respectively. The implementations of CND in the computer-aided diagnosis of Emphysema is also presented in this paper.

Study of Computer Aided Diagnosis for the Improvement of Survival Rate of Lung Cancer based on Adaboost Learning (폐암 생존율 향상을 위한 아다부스트 학습 기반의 컴퓨터보조 진단방법에 관한 연구)

  • Won, Chulho
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.87-92
    • /
    • 2016
  • In this paper, we improved classification performance of benign and malignant lung nodules by including the parenchyma features. For small pulmonary nodules (4-10mm) nodules, there are a limited number of CT data voxels within the solid tumor, making them difficult to process through traditional CAD(computer aided diagnosis) tools. Increasing feature extraction to include the surrounding parenchyma will increase the CT voxel set for analysis in these very small pulmonary nodule cases and likely improve diagnostic performance while keeping the CAD tool flexible to scanner model and parameters. In AdaBoost learning using naive Bayes and SVM weak classifier, a number of significant features were selected from 304 features. The results from the COPDGene test yielded an accuracy, sensitivity and specificity of 100%. Therefore proposed method can be used for the computer aided diagnosis effectively.

An Electronic Colon Cleansing Method using a Patient Colon CT Profile (환자 대장 CT 프로파일을 이용한 전자적 장세척 방법)

  • Kim, Han-Byul;Kim, Dong-Sung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.8
    • /
    • pp.493-500
    • /
    • 2008
  • This paper proposes an electronic colon cleansing method using a patient CT profile for a virtual colonoscopy. The proposed method extracts the colon using cubic seeded region growing, and removes tagged materials adjacent to the colon. Residuals produced by a partial volume effect at the boundary of air-tagged material are deleted, and the removed soft tissue pixels due to a partial volume effect at the boundary of tagged material-soft tissue are recovered using a patient CT profile. The proposed method was applied to 16 virtual colonoscopy patient data sets, and produced promising results by a subjective evaluation of a radiologist and by a quantitative evaluation of a computer-aided diagnosis system.

A Study of CBIR(Content-based Image Retrieval) Computer-aided Diagnosis System of Breast Ultrasound Images using Similarity Measures of Distance (거리 기반 유사도 측정을 통한 유방 초음파 영상의 내용 기반 검색 컴퓨터 보조 진단 시스템에 관한 연구)

  • Kim, Min-jeong;Cho, Hyun-chong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1272-1277
    • /
    • 2017
  • To assist radiologists for the characterization of breast masses, Computer-aided Diagnosis(CADx) system has been studied. The CADx system can improve the diagnostic accuracy of radiologists by providing objective information about breast masses. Morphological and texture features were extracted from the breast ultrasound images. Based on extracted features, the CADx system retrieves masses that are similar to a query mass from a reference library using a k-nearest neighbor (k-NN) approach. Eight similarity measures of distance, Euclidean, Chebyshev(Minkowski family), Canberra, Lorentzian($F_2$ family), Wave Hedges, Motyka(Intersection family), and Cosine, Dice(Inner Product family) are evaluated by ROC(Receiver Operating Characteristic) analysis. The Inner Product family measure used with the k-NN classifier provided slightly higher performance for classification of malignant and benign masses than those with the Minkowski, $F_2$, and Intersection family measures.

An Intelligent Agent System using Multi-View Information Fusion (다각도 정보융합 방법을 이용한 지능형 에이전트 시스템)

  • Rhee, Hyun-Sook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.12
    • /
    • pp.11-19
    • /
    • 2014
  • In this paper, we design an intelligent agent system with the data mining module and information fusion module as the core components of the system and investigate the possibility for the medical expert system. In the data mining module, fuzzy neural network, OFUN-NET analyzes multi-view data and produces fuzzy cluster knowledge base. In the information fusion module and application module, they serve the diagnosis result with possibility degree and useful information for diagnosis, such as uncertainty decision status or detection of asymmetry. We also present the experiment results on the BI-RADS-based feature data set selected form DDSM benchmark database. They show higher classification accuracy than conventional methods and the feasibility of the system as a computer aided diagnosis system.

Imaging Human Structures

  • Kim Byung-Tae;Choi Yong;Mun Joung Hwan;Lee Dae-Weon;Kim Sung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.283-294
    • /
    • 2005
  • The Center for Imaging Human Structures (CIH) was established in December 2002 to develop new diagnostic imaging techniques and to make them available to the greater community of biomedical and clinical researchers at Sungkyunkwan University. CIH has been involved in 5 specific activities to provide solutions for early diagnosis and improved treatment of human diseases. The five area goals include: 1) development of a digital mammography system with computer aided diagnosis (CAD); 2) development of digital radiological imaging techniques; 3) development of unified medical solutions using 3D image fusion; 4) development of multi-purpose digital endoscopy; and, 5) evaluation of new imaging systems for clinical application