• Title/Summary/Keyword: Computer-Aided-Design

Search Result 1,315, Processing Time 0.031 seconds

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction (3 방향 절환밸브의 공동현상 저감을 위한 형상최적화)

  • Lee, Myeong Gon;Lim, Cha Suk;Han, Seung Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.11
    • /
    • pp.1123-1129
    • /
    • 2015
  • A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

The Development of IMG Integral Foaming Crashpad (IMG 발포일체성형 크래시패드 개발)

  • Choi, Sung-Sik;Kong, Byung-Seok;Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.607-612
    • /
    • 2019
  • The softness of the crashpad part is one of the important factors which affect the interior perceived quality of the vehicle interior. And while improving the softness of the crashpad part, every effort to lower the production cost has been going on. The PU foaming process for the crashpad part depends on the understanding of a lot of processes, tools and material properties. Therefore, to achieve the requirement of the customer for the interior part's visual quality, the integrated design techniques are investigated to correlate the processes, tool design, material design and the computer aided analysis. In this paper, IMG (In Mold Grain) designed concept is firstly developed to integrate the skin preforming, plastic injection molding of the substrate and the foaming process in a tool within reduced processes. Through the application of this technology, softness of crashpad is improved by 40% compared to the conventional vacuum molding method, and the existing process is reduced by 50% by integrating the injection process and the manufacturing process. And by integrating the injection mold and the skin mold and removing the foaming mold, the number of molds are reduced from 3 to 1, resulting in 20% reduction in the cost of applying a medium-sized passenger car.

A Case Study of Spatial CAD Education in Blended Learning Environment (혼합형 학습(Blended Learning) 환경에서의 공간디자인 CAD 수업 사례연구)

  • Hwang, Ji Hyoun;Lim, Haewon
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.115-126
    • /
    • 2021
  • The purpose of this study is to closely analyze the case of blended-learning in order to provide a diverse and flexible learning environment while maintaining the nature of face-to-face classes, and to identify the learning environment that supports blended-learning in each class step and the educational experience of students. The experience and satisfaction of blended learning were investigated in various ways: course evaluation, LMS activity evaluation, and questionnaire before and after the class. As a result, the blended-learning is better than the traditional face-to-face classes, in providing real-time feedback, opportunities for various interactions, and textual conversations, anytime and anywhere. In addition, as a result of the preliminary survey, as a measure to solve the opinion that concentration was reduced due to problems such as networks and felt uncomfortable in the communication part, the theory and lectures of the design practice class were conducted non-face-to-face. The individual Q&A and feedback were conducted face-to-face and non-face-to-face. As a result of the follow-up survey, it was found that concentration and efficiency could be improved. This opens up possibilities for active use of the online environment in design practice classes.

A Study on Automatic Calculation of Earth-volume Using 3D Model of B-Rep Solid Structure (B-Rep Solid 구조의 3차원 모델을 이용한 토공량 자동 산정에 관한 연구)

  • Kim, Jong Nam;Um, Dae Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.5
    • /
    • pp.403-412
    • /
    • 2022
  • As the 4th industrial revolution is in full swing and next-generation ICT(Information & Communications Technology) convergence technology is being developed, various smart construction technologies are being rapidly introduced in the construction field to respond to technological changes. In particular, since the earth-volume calculation process for site design accounts for a large part of the design cost at the construction site, related researches are being actively conducted to improve the efficiency of the process and accurately calculate the earth-volume. The purpose of this study is to present a method for quickly constructing the topography of a construction site in 3D and efficiently calculating earth-volume using the results. For this purpose, the construction site was constructed as a 3D realistic model using large-scale aerial photos obtained from UAV(Unmanned Aerial Vehicle). At this time, since the constructed 3D realistic model has a surface model structure in which volume calculation is impossible, the structure was converted into a 3D solid model to enable volume calculation. And we devised a methodology to calculate earth-volume based on CAD(Computer-Aided Design and Drafting) using the converted solid model. Automatically calculating earth-volume from the solid model by applying the method. As a result, It was possible to confirm a relative deviation of 1.52% from the calculated earth-volume from the existing survey results. In addition, as a result of comparative analysis of the process time required for each method, it was confirmed that the time required is reduced of 60%. The technique presented in this study is expected to be utilized as a technology for smart construction management, such as periodic site monitoring throughout the entire construction process, as well as cost reduction for earth-volume calculation.

Design Information Management System Core Development Using Industry Foundation Classes (IFC를 이용한 설계정보관리시스템 핵심부 구축)

  • Lee Keun-hyung;Chin Sang-yoon;Kim Jae-jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.1 no.2 s.2
    • /
    • pp.98-107
    • /
    • 2000
  • Increased use of computers in AEC (Architecture, Engineering and Construction) has expanded the amount of information gained from CAD (Computer Aided Design), PMIS (Project Management Information System), Structural Analysis Program, and Scheduling Program as well as making it more complex. And the productivity of AEC industry is largely dependent on well management and efficient reuse of this information. Accordingly, such trend incited much research and development on ITC (Information Technology in Construction) and CIC (Computer Integrated Construction) to be conducted. In exemplifying such effort, many researchers studied and researched on IFC (Industry Foundation Classes) since its development by IAI (International Alliance for Interoperability) for the product based information sharing. However, in spite of some valuable outputs, these researches are yet in the preliminary stage and deal mainly with conceptual ideas and trial implementations. Research on unveiling the process of the IFC application development, the core of the Design Information management system, and its applicable plan still need be done. Thus, the purpose of this paper is to determine the technologies needed for Design Information management system using IFC, and to present the key roles and the process of the IFC application development and its applicable plan. This system play a role to integrate the architectural information and the structural information into the product model and to group many each product items with various levels and aspects. To make the process model, we defined two activities, 'Product Modeling', 'Application Development', at the initial level. Then we decomposed the Application Development activity into five activities, 'IFC Schema Compile', 'Class Compile', 'Make Project Database Schema', 'Development of Product Frameworker', 'Make Project Database'. These activities are carried out by C++ Compiler, CAD, ObjectStore, ST-Developer, and ST-ObjectStore. Finally, we proposed the applicable process with six stages, '3D Modeling', 'Creation of Product Information', 'Creation and Update of Database', 'Reformation of Model's Structure with Multiple Hierarchies', 'Integration of Drawings and Specifications', and 'Creation of Quantity Information'. The IFCs, including the other classes which are going to be updated and developed newly on the construction, civil/structure, and facility management, will be used by the experts through the internet distribution technologies including CORBA and DCOM.

  • PDF

Manufacturing of a Korean Hand Phantom with Human Electrical Properties at 835 MHz and 1,800 MHz Bands (835 MHz 및 1,800 MHz 대역에서 인체의 전기적 특성을 가지는 한국인 손 모양의 팬텀 제작)

  • Choi, Donggeun;Gimm, Yoonmyoung;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.534-540
    • /
    • 2013
  • Interest of the hand effect on the electromagnetic wave are internationally increasing with the increase of the use of the mobile phone. IEC TC106(International Electrotechnical Commission, Technical Committee 106) promotes international research exchange program in order to reflect the effect of human hands in the standard assessment method of human exposure dosimetry by the electromagnetic wave of mobile phones. Since current commercialized hand phantom is manufactured by taking into account the average size of westerners and provides only one grip posture, it imposes many restrictions on the accurate SAR measurement. Therefore, the development of proper hand phantom accounting for domestic situation and various grip posture capability is essential in order to analyze the accurate effect of human hand on the exposure estimation. In this paper, a jelly hand phantom suitable for Korean was manufactured with various grip posture capability at 835 MHz and 1,800 MHz bands. Although the tolerances of permittivity and conductivity of the manufactured hand phantom are with ${\pm}10%$ each, it was much less than CTIA(Cellular Telecommunication Industry Association) tolerance of ${\pm}20%$ at both bands. Its 3D CAD(3 Dimensional Computer Aided Design) file which was developed can be utilized for the simulation of human hand effect on SAR measurement of mobile phones. The findings in this study can be utilized for the analysis of human hand effect on SAR measurement of a mobile phone.

The implementation of cable path and overfill visualization based on cable occupancy rate in the Shipbuilding CAD (조선 CAD에서 선박의 Cable 점유율을 기반으로 Cable 경로 및 Overfill 가시화 구현)

  • Kim, Hyeon-Jae;Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.740-745
    • /
    • 2016
  • Cables are installed for tens of thousands of connections between various pieces of equipment to operate and control a commercial ship. The correct shortest-route data is necessary since these are complicated cable installations. Therefore, an overfill interval commonly exists in the shortest paths for cables as estimated by Dijkstra's algorithm, even if this algorithm is generally used. It is difficult for an electrical engineer to find the overfill interval in 3D cable models because the occupancy rate data exist in a data sheet unlinked to three-dimensional (3D) computer-aided design (CAD). The purpose of this study is to suggest a visualization method that displays the cable path and overfill interval in 3D CAD. This method also provides various color visualizations for different overfill ranges to easily determine the overfill interval. This method can reduce cable-installation man-hours from 7,000 to 5,600 thanks to a decreased re-installation rate, because the cable length calculation's accuracy is raised through fast and accurate reviews based on 3D cable visualization. As a result, material costs can also be reduced.

Restoration of an Edentulous Patient with CAD/CAM Guided Implant Surgery ($NobelGuide^{TM}$) and Immediate Loading: Case Report (무치악 환자에서 CAD/CAM을 이용한 임플란트 식립($NobelGuide^{TM}$) 및 즉시하중 증례)

  • Ko, Kyoung-Ho;Lim, Kwang-Gil;Kim, Dae-Gon;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.27 no.2
    • /
    • pp.233-245
    • /
    • 2011
  • With the use of computed tomography (CT), computer-aided design/computer-assisted machining (CAD/CAM) technology and internet, the implant dentistry has been evolved. The surgical templates made by CAD/CAM technology and precise installation of implants, permit restorations to be inserted immediately after implants have been placed. The advantages of CAD/CAM guided implant procedures are flapless, minimally invasive surgery and shorter surgery time. With this technique, less postoperative morbidity and delivery of prosthesis for immediate function would be possible. A patient with an edentulous maxilla and mandible received 7 implants in mandible using CAD/CAM surgical templates. Prefabricated provisional fixed prostheses were connected immediately after implant installation. Provisional prostheses were evaluated for aesthetics and function during 6 months. Definitive prostheses were fabricated. At 6 months recall appointment, patient's occlusion was slightly changed. To prevent additional adverse effect, regular check-up and occlusal adjustment would be needed.

Development of a Simulation Prediction System Using Statistical Machine Learning Techniques (통계적 기계학습 기술을 이용한 시뮬레이션 결과 예측 시스템 개발)

  • Lee, Ki Yong;Shin, YoonJae;Choe, YeonJeong;Kim, SeonJeong;Suh, Young-Kyoon;Sa, Jeong Hwan;Lee, JongSuk Luth;Cho, Kum Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.593-606
    • /
    • 2016
  • Computer simulation is widely used in a variety of computational science and engineering fields, including computational fluid dynamics, nano physics, computational chemistry, structural dynamics, and computer-aided optimal design, to simulate the behavior of a system. As the demand for the accuracy and complexity of the simulation grows, however, the cost of executing the simulation is rapidly increasing. It, therefore, is very important to lower the total execution time of the simulation especially when that simulation makes a huge number of repetitions with varying values of input parameters. In this paper we develop a simulation service system that provides the ability to predict the result of the requested simulation without actual execution for that simulation: by recording and then returning previously obtained or predicted results of that simulation. To achieve the goal of avoiding repetitive simulation, the system provides two main functionalities: (1) storing simulation-result records into database and (2) predicting from the database the result of a requested simulation using statistical machine learning techniques. In our experiments we evaluate the prediction performance of the system using real airfoil simulation result data. Our system on average showed a very low error rate at a minimum of 0.9% for a certain output variable. Using the system any user can receive the predicted outcome of her simulation promptly without actually running it, which would otherwise impose a heavy burden on computing and storage resources.