• 제목/요약/키워드: Computer simulation and developed model

검색결과 694건 처리시간 0.026초

네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험 (Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results)

  • 전봉환;이판묵;이계홍;홍석원;이지홍
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

퍼지 모델을 위한 동적 상태 피드백 제어기 설계 (Dynamic State Feedback Controller Synthesis for Fuzzy Models)

  • 장욱;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.528-530
    • /
    • 1999
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex single input single output nonlinear systems. Firstly, the nonlinear system is represented by well-known Takagai-Sugeno (TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller usually is composed of two processes. One is to determine static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative of the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. One simulation example is given to show the effectiveness and feasibility of the proposed fuzzy controller design method.

  • PDF

낮은 에너지로 실리콘에 이온 주입된 분포와 열처리된 인듐의 거동에 관한 시뮬레이션과 모델링 (Modeling and Simulation on Ion Implanted and Annealed Indium Distribution in Silicon Using Low Energy Bombardment)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제29권12호
    • /
    • pp.750-758
    • /
    • 2016
  • For the channel doping of shallow junction and retrograde well formation in CMOS, indium can be implanted in silicon. The retrograde doping profiles can serve the needs of channel engineering in deep MOS devices for punch-through suppression and threshold voltage control. Indium is heavier element than B, $BF_2$ and Ga ions. It also has low coefficient of diffusion at high temperatures. Indium ions can be cause the erode of wafer surface during the implantation process due to sputtering. For the ultra shallow junction, indium ions can be implanted for p-doping in silicon. UT-MARLOWE and SRIM as Monte carlo ion-implant models have been developed for indium implantation into single crystal and amorphous silicon, respectively. An analytical tool was used to carry out for the annealing process from the extracted simulation data. For the 1D (one-dimensional) and 2D (two-dimensional) diffused profiles, the analytical model is also developed a simulation program with $C^{{+}{+}}$ code. It is very useful to simulate the indium profiles in implanted and annealed silicon autonomously. The fundamental ion-solid interactions and sputtering effects of ion implantation are discussed and explained using SRIM and T-dyn programs. The exact control of indium doping profiles can be suggested as a future technology for the extreme shallow junction in the fabrication process of integrated circuits.

Object oriented simulation in a CIM environment

  • 김종수
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 1991년도 춘계공동학술대회 발표논문 및 초록집; 전북대학교, 전주; 26-27 Apr. 1991
    • /
    • pp.67-76
    • /
    • 1991
  • For several years, graduate students and faculty of the Engineering Systems Research Center at U.C., Berkeley have been studying new methods of planning and scheduling in a computer integrated manufacturing environment, with particular emphasis on large scale integrated circuit fabrication. One part of this work, focusing on short interval scheduling, uses simulation models as a primary research tool. We have built two versions of the same basic model (programmed in C) to study two different problems (one deals with machine down time and the other with setup times). These have proven to be efficient for studying particular problems, but are difficult and time consuming to modify. We are convinced that our research will be more effective: (1) if it were easier to build special purpose models tailored to the research question at hand; and (2) if we had better interfaces to graphics output. Commercially available factory simulators are inadequate for this research for a variety of reasons. Existing packages such as SIMKIT, SLAM, SIMAN and EXCELL have their own weaknesses. Typically, they are hard to develop and to modify. They do not allow for adding new dispatching decisions or release decision. Also, it is hard to add more machines to existing environment or change the route the product flows. For these various reasons, we had developed a new simulation package having flexibility and modularity. In this paper, based on experiences gained in the application of object oriented programming, we discuss unique features of the simulator developed in OOPS and ways to take advantage of features in developing and using manufacturing simulation software written in the OOPS

  • PDF

서울시(市) 신호체제의 적정 phase split 과 연쇄화를 위한 최적 offset (Determination of Optimal Phase Split and Offset for the Synchronization of Traffic Signals in the CBD of Seoul)

  • 박경수
    • 대한산업공학회지
    • /
    • 제3권1호
    • /
    • pp.49-53
    • /
    • 1977
  • The coordinated control of the traffic signals of adjacent intersections can reduce delays, relative number of stops and congestions in the coordinated traffic area. The road capacity can be increased to a certain extend because the stopping and starting of vehicles facing red traffic lights can be avoided in many instances due to the progression established along an artery. However, if traffic centers or leaves the main flow in irregular volumes on the intermediate road section, a coordination of traffic signals is unnecessary and may even be harmful. Therefore, a computer simulation model to simulate and predict the effectiveness of a synchronized traffic signal system in the CBD of Seoul was developed and alternative policy variables, such as cycle time, offsets, phase splits, to be fed into the simulation model had to be generated. This is a report of (1) the development of a heuristic algorithm for the determination of phase splits when there are amber periods specifically reserved for left turns and (2) the computerization of time-space diagramming.

  • PDF

An intelligent system for the design of RC slabs

  • Hossain, K.M.A.;Famiyesin, O.O.R.
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.297-312
    • /
    • 2001
  • The accurate finite element (FE) simulation of reinforced concrete (RC) slabs, having different boundary conditions and subjected to uniformly distributed loading, has led to the use of the developed FE models for generating results of ultimate loads from predictions of 'computer-model' RC slabs having different material and geometric properties. Equations derived from these results constitute the primary database of an intelligent computer-aided-design (CAD) system developed for accurate and fast information retrieval on arbitrary slabs. The system is capable of generating a secondary database through systems of interpolation and can be used for design assistance purposes.

개인용 컴퓨터와 고속 이더넷을 이용한 다기 다모선 전력 시스템 실시간 시뮬레이터 개발에 관한 연구 (Development of an Real-time Multi-machine Power System Simulator using Personal Computers and Fast Ethernet)

  • 김중문
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.63-68
    • /
    • 2009
  • As the complexity of the power system becomes higher, tests of the new devices, such as exciter and PCS(Power Conversion System) of the distributed generation sources, in the real operating condition are more important. However tests of the unverified devices in the real power system may cause hazardous malfunction of the system. In order to avoid this problem, power devices may be tested with the real-time simulators instead of the real power system. This paper presents an real-time multi machine power system simulator using PCs(Personal Computer) and Fast Ethernet. Developed real-time simulator performs the electro-mechanical dynamic simulation of multi-machine power system by the network distributed computing technique. Because the simulator consists of usual PCs and Fast Ethernet, it is possible to make up a simulation system very cheaper than the conventional real-time simulator which consists of dedicated expensive hardware devices. The performance of the developed simulator is tested and verified with the scaled model excitation system. The test which adjust the control parameters of the exciter is performed with the well-known New England 10 generator 39 bus sample power system.

Component method model for predicting the moment resistance, stiffness and rotation capacity of minor axis composite seat and web site plate joints

  • Kozlowski, Aleksander
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.469-486
    • /
    • 2016
  • Codes EN 1993 and EN 1994 require to take into account actual joint characteristics in the global analysis. In order to implement the semi-rigid connection effects in frame design, knowledge of joint rotation characteristics ($M-{\phi}$ relationship), or at least three basic joint properties, namely the moment resistance $M_R$, the rotational stiffness $S_j$ and rotation capacity, is required. To avoid expensive experimental tests many methods for predicting joint parameters were developed. The paper presents a comprehensive analytical model that has been developed for predicting the moment resistance $M_R$, initial stiffness $S_{j.ini}$ and rotation capacity of the minor axis, composite, semi-rigid joint. This model is based on so-called component method included in EN 1993 and EN 1994. Comparison with experimental test results shows that a quite good agreement was achieved. A computer program POWZ containing proposed procedure were created. Based on the numerical simulation made with the use of this program and applying regression analysis, simplified equations for main joint properties were also developed.

고분자 압출기에 있어서 계량부 용융수지의 유동해석 (An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder)

  • 최만성;김광선
    • 반도체디스플레이기술학회지
    • /
    • 제11권4호
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

다물체 동역학 해석기술을 이용한 핸드레일의 슬립특성 개선 (Improvement of Handrail Slippage Characteristics Using Multi-Body Dynamic Analysis Technique)

  • 박찬종
    • 대한기계학회논문집A
    • /
    • 제28권9호
    • /
    • pp.1422-1428
    • /
    • 2004
  • In this paper, computer simulation model of handrail band including pulley-driving system is developed to calculate handrail slippage. This handrail simulation model is validated with test result within operating range and used to predict its slippage behavior with respect to variation of 4 different design parameters considering the applicability into the real handrail system. Based upon this parameter study, optimal condition for handrail slippage improvement is proposed without time-consuming and costly experiments of the real handrail system. And then performance improvement of handrail slippage complied with safety code is achieved after applying the optimal condition into the real handrail band system.