• Title/Summary/Keyword: Computer simulation and developed model

Search Result 694, Processing Time 0.028 seconds

Forecasting Load Balancing Method by Prediction Hot Spots in the Shared Web Caching System

  • Jung, Sung-C.;Chong, Kil-T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2137-2142
    • /
    • 2003
  • One of the important performance metrics of the World Wide Web is how fast and precise a request from users will be serviced successfully. Shared Web Caching (SWC) is one of the techniques to improve the performance of the network system. In Shared Web Caching Systems, the key issue is on deciding when and where an item is cached, and also how to transfer the correct and reliable information to the users quickly. Such SWC distributes the items to the proxies which have sufficient capacity such as the processing time and the cache sizes. In this study, the Hot Spot Prediction Algorithm (HSPA) has been suggested to improve the consistent hashing algorithm in the point of the load balancing, hit rate with a shorter response time. This method predicts the popular hot spots using a prediction model. The hot spots have been patched to the proper proxies according to the load-balancing algorithm. Also a simulator is developed to utilize the suggested algorithm using PERL language. The computer simulation result proves the performance of the suggested algorithm. The suggested algorithm is tested using the consistent hashing in the point of the load balancing and the hit rate.

  • PDF

The Analysis of Swing Pattern during the Soft Golf Swing (소프트 골프 스윙 시 스윙 패턴 분석)

  • So, H.J.;Yu, M.;Kwak, K.Y.;Kim, S.H.;Kim, N.G.;Kim, D.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.2
    • /
    • pp.151-161
    • /
    • 2010
  • Soft Golf is a newly developed recreational sport in our research team aimed to become a safe and easy-to-learn sport for all ages. The advantage of Soft Golf stems from lighter weight of the club and much larger area of the sweet spot. The purpose of this study is to analyze ground reaction force(GRF) and joint angle during soft Golf club and regular golf club swing. The GRF of golf swing was recorded by 3-D motion analysis system and forceplate. The joint angle of golf swing was obtained from computer simulation model. The GRF and joint angle of golf swing are used to analysis of golf swing pattern. The pattern of GRF and joint angle during soft golf club swing was similar to that during regular golf club swing. This result means that soft golf club reduces the risk of injury and has an effect on similar entertainment of regular golf.

Robotic Workplace Calibration Using Teaching Data of Work-Piece Fixed in Robotic Workplace for Robot Off-line Programming (로봇 오프라인 프로그래밍을 위한 작업장에 고정된 공작물 교시 정보를 이용한 로봇작업장 보정)

  • Jeong, Jun Ho;Kuk, Kum Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.6
    • /
    • pp.615-621
    • /
    • 2013
  • The robot calibration has greatly improved the absolute accuracy of the industrial robot. However, the accuracy of the relative positions of robotic tool-tip at work-points on a work-piece is only slightly corrected by the robot calibration since there has been no practical method to eliminate the elements of the setup position errors at a robotic workplace. A robotic workplace calibration is demonstrated in this paper to minimize the relative position errors between a robot tool-tip and the work-point on a work-piece. The existing teaching and playback method has been developed for the robotic workplace calibration. This paper uses the work-piece fixed in a robotic work-place as measurement equipment instead of a special robot measurement equipment for the robotic workplace calibration. The positive effect of the robotic workplace calibration is supported by the results of computer simulation on an ideal robotic workplace model and an experiment at the actual robotic workplace.

Simulation of Evacuation Dynamics of Three Types of Pedestrians with Morality (도덕성을 가지는 세 종류의 보행자에 대한 긴급대피 동역학 시뮬레이션)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.1
    • /
    • pp.79-85
    • /
    • 2011
  • The problem of evacuating pedestrians from a room or channel under panic conditions is of obvious importance in daily life. In recent years, several computer models have been developed to simulate pedestrian dynamics. Understanding evacuation dynamics can allow for the design of more comfortable and safe pedestrian facilities. However, these models do not take into account the type and state of mind of pedestrians. They deal with pedestrians as particles and the state of mind as a social force, which is represented by conservative and long-range interactions between individuals. In this study, I used the lattice model proposed in my previous study to explore the evacuation behavior of pedestrians with morality. In this model, three types of pedestrians are considered: adults, children, and injured people. Collisions between adults and children result in injured people. When the number of injured people continuously in contact with each other reaches a given value k, the injured people are removed from the lattice space. This situation is the same as that in which pedestrians start stepping over injured people. This behavior was interpreted as the morality of pedestrians. Simulations showed that the evacuation showed down and eventually became jammed owing to the injured people acting as "obstacles" in relation to the morality k.

A Study of Cross Alignment for Increasing the Performance of Small Antenna (소형 안테나의 성능 향상을 위한 직교 배치에 관한 연구)

  • Kim, Jong-Sung;Choi, Kyung;Kim, Jae-Heung
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.155-161
    • /
    • 2002
  • As the wireless communications are gradually developed, the higher frequency is demanded and the smaller the size of antenna shall be reduced by the wavelength of the operating frequency. However, the smaller the size of antenna becomes, the less the gain is obtained according to the frequency, so that a new attempt such as an array antenna has been examined to improve the characteristics. Also, for the convenience of communication, the omni-directional property is required. In this paper, two antennas system which is aligned in cross direction in tested and analyzed. The main scope is focused to get an appropriated distance between the two small antennas to get better properties. There are various ways of array arrangement, but in this study, it should be placed on the same PCB for easy implementation and the direction of each antenna are aligned to be a cross($90^{\circ}$) position. The study is carried out by comparing the radiation patterns mainly, and the theoretical expectation and the computer simulation are also executed. The final model is the folded IF-antennas system printed on PCB and the ideal dipole-antenna arrangement in also test to verify the possibility of our implementation. And it is finally proved by measuring experiments.

  • PDF

Dynamic Simulation of Modifiable Bipedal Walking on Uneven Terrain with Unknown Height

  • Hong, Young-Dae;Lee, Ki-Baek
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.733-740
    • /
    • 2016
  • To achieve bipedal walking in real human environments, a bipedal robot should be capable of modifiable walking both on uneven terrain with different heights and on flat terrain. In this paper, a novel walking pattern generator based on a 3-D linear inverted pendulum model (LIPM) is proposed to achieve this objective. By adopting a zero moment point (ZMP) variation scheme in real time, it is possible to change the center-of-mass (COM) position and the velocity of the 3-D LIPM throughout the single support phase. Consequently, the proposed method offers the ability to generate a modifiable pattern for walking on uneven terrain without the necessity for any extra footsteps to adjust the COM motion. In addition, a control strategy for bipedal walking on uneven terrain with unknown height is developed. The torques and ground reaction force are measured through force-sensing resisters (FSRs) on each foot and the foot of the robot is modeled as three virtual spring-damper models for the disturbance compensation. The methods for generating the foot and vertical COM of 3-D LIPM trajectories are proposed to achieve modifiable bipedal walking on uneven terrain without any information regarding the height of the terrain. The effectiveness of the proposed method is confirmed through dynamic simulations.

Performance of Turbo Codes in the Direct Detection Optical PPM Channel (직접 검파 펄스 위치 변조 광통신 채널에서의 터보 부호의 성능)

  • 이항원;이상민
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.6C
    • /
    • pp.570-579
    • /
    • 2003
  • The performance of turbo codes is investigated in the direct detection optical PPM channel. We assume that an ideal photon counter is used as an optical detector and that the channel has background noise as well as quantum noise. Resulting channel model is M-ary PPM Poisson channel. We propose the structure of the transmitter and receiver for applying turbo codes to this channel. We also derive turbo decoding algorithm for the proposed coding system, by modifying the calculation of the branch metric inherent in the original turbo decoding algorithm developed for the AWGN channel. Analytical bounds are derived and computer simulation is performed to analyze the performance of the proposed coding scheme, and the results are compared with the performances of Reed-Solomon codes and convolutional codes.

A Study on the Measurements, Moldeling, and Passive Filter Application of Neutral Hormonic Currents by Field Tests (현장시험에 의한 중성선 고조파 전류 측정, 모델링 및 수동필터 적용에 관한 연구)

  • 김경철;강윤모;이일무
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.103-111
    • /
    • 2003
  • With the proliferation of nonlinear loads such as personal computer in an educational building, high neutral harmonic currents have been observed. High neutral currents in three-phase four ire distribution power systems can cause tots of harmonic problems such as overloaded neutral conductors and malfunction of protective equipment. On-site measurements of harmonic currents and voltages were made and the corresponding equivalent circuits was developed. The circuit model under study was simulated numerically and graphically through the use of the software MATLAB. Simulation results verifying the effect of a single-tuned passive filter for the neutral harmonic current reduction are presented.

Study on the distribution law and influencing factors of pressure field distribution before exploitation in heavy oilfield

  • Zhang, Xing;Jiang, Ting T.;Zhang, Jian H.;Li, Bo;Li, Yu B.;Zhang, Chun Y.;Xu, Bing B.;Qi, Peng
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.205-213
    • /
    • 2019
  • A calculation model of reservoir pressure field distribution around multiple production wells in a heavy oil reservoir is established, which can overcome the unreasonable uniform-pressure value calculated by the traditional mathematical model in the multiwell mining areas. A calculating program is developed based on the deduced equations by using Visual Basic computer language. Based on the proposed mathematical model, the effects of drainage rate and formation permeability on the distribution of reservoir pressure are studied. Results show that the reservoir pressure drops most at the wellbore. The farther the distance away from the borehole, the sparser the isobaric lines distribute. Increasing drainage rate results in decreasing reservoir pressure and bottom-hole pressure, especially the latter. The permeability has a significant effect on bottom hole pressure. The study provides a reference basis for studying the dynamic pressure field distribution before thermal recovery technology in heavy oilfield and optimizing construction parameters.

Microcomputer-Based Maximum Efficiency Control of a Synchronous Motor. (마이크로 컴퓨터를 이용한 동기 전동기의 최대 효율제)

  • Hyun, Dong-Seok;Park, Min-Ho
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.12
    • /
    • pp.874-887
    • /
    • 1987
  • The efficiency of a synchronous motor can be substantially improved by controlling armature voltage, field excitation, and load angle on optimum values which yield minimum input power at any specified torque and speed. This improvement is particularly noticeable in the case of light loads. In addition, the control of armature input voltage improves the power factor at which the motor operates. Employed in the analysis is a new equivalent circuit model of the motor which incorporates the frequency dependent nature of the motor parameters and the effects of iron loss. The stability of synchronous motor operation is studied by applying the Nyquist stability criterion to the linearized equations which describe the behavior of the motor as the motor loads perturb about a steady-state operating point. This investigation reveals that, in some cases, the stable region of the motor is delineated from the results of a computer simulation. With a view to reducing harmonic loss and improving torque pulsation from harmonic components, a very poweful pulse amplitude modulation (PAM) method using an 16-bit microcomputer has been developed. This method has the advantages of simplicity of control algorithms and requires small memory space for storing thyristor trigger angles for a three-phase PAM inverter. The method can be used for smooth control of both modulation depth and frequency over a wide range.

  • PDF