• Title/Summary/Keyword: Computer simulation and developed model

Search Result 694, Processing Time 0.026 seconds

Optimization of the growth of $CaF_2$ crystals by model experiments and numerical simulation

  • Molchanov, A.;Graebner, O.;Wehrhan, G.;Friedrich, J.;Mueller, G.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.1
    • /
    • pp.15-18
    • /
    • 2003
  • High purity single crystalline calcium fluoride ($CaF_2$) has excellent optical transmission characteristics down to deep UV and is therefore selected as the main optical material for the next generation of lithography apparatus operating at wavelength of 157 nm. The growth of large sized $CaF_2$ single crystals with the required properties for this optical application can be achieved only by optimizing the crystal growth process by the aid of numerical simulation. This needs especially a precise calculation of the heat transport and temperature distribution in the solid and liquid $CaF_2$ under crystal growth conditions. As $CaF_2$ is considered to be semitransparent, the internal radiative heat transfer in $CaF_2$ plays an decisive role in the simulation of the heat transport. On the other hand it is very difficult to obtain quantitative experimental data for evaluating numerical models as $CaF_2$ is extremely corrosive at high temperatures. In this work we present a newly developed experimental technique to perform temperature measurements in $CaF_2$-crystal as well as in the melt under conditions of crystal growth process. These experimental results are compared to calculated temperature data, which were obtained by using different numerical models concerning the internal heat transfer in semitransparent $CaF_2$. It will be shown, that an advanced model, which was developed by the authors, gives a much better agreement with experimental data as a standard model, which was taken from the literature.

Development of a Preprocessor Program for Articulated Total Body (ATB의 전처리 프로그램 개발)

  • Lee, Dong-Jae;Son, Kwon;Choi, Kyung-Hyun;Jeon, Kyu-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.214-222
    • /
    • 2002
  • Computer simulations are widely used to analyze passenger safety in simulated traffic accidents. ATB, Articulated Total Body, is a computer simulation model developed to predict gross human body response to such dynamic environments as vehicle crashes and pilot ejections. ATB, whose code is open, has high flexibility and application capability that users can easily insert defined modules and functions. ATB is, however, inconvenient as it was coded in FORTRAN and it needs a formated input file. Moreover, it takes much time to make input files and to modify coding errors. This study aims to increase user friendliness by adding a preprocessor program, WINATB(WINdows ATB), to the conventional ATB. WINATB, programmed in Visual C++ and OpenGL, uses ATB IV as a dynamic solver. The preprocessor helps users prepare input files through graphic interface and dialog box. An additional postprocessor makes the graphical presentation of simulated results. In these case of the frontal crash, the rear impact and the side impact, the simulation results obtained by WINATB and MADYMO(MAthematical Dynamic Model) are compared to validate the effectiveness of WINAIB.

A Study on the Application of 3D Digital Animation Model for Fashion Design I (3D 디지털 애니메이션 모델을 활용한 의상 시뮬레이션에 관한 연구 I)

  • 김혜영
    • Journal of the Korean Society of Costume
    • /
    • v.50 no.2
    • /
    • pp.97-109
    • /
    • 2000
  • The purpose of this study is to apply 3D computer graphics in fashion design as a creative medium and it attempts to fine out what advantages 3D technique can offer to fashion design. For this purpose, this study, first, tries to develop a 3D digital model in which designer can select design, color , pattern and fabric palette whatever necessary . This study uses of the software named 'Poser of Fractal Design' and the and the 3D digital model comprises four stages ; body modeling, item design (item coordination), color design (color coordination), pattern and fabric design (pattern and fabric coordination). Secondly, this study seeks to accumulate a data base which was produced in the course of case studies, which have applied 3D digital model to design. The outcome of the case studies shows that 3D digital model can enhance designing in the following four aspects. ⅰ) It can give more freedom to designer to try various ideas, revise and modify them, It can also produce random generation. Through this process, the designer test various input and output without damage on fabric after revision and alteration. ⅱ) It can help designers to enhance their accuracy. Since fault in the design developed by the 3D digital model can be detected in advance, designers can make correlation before actual work begins. In the end, designers can express their ideas and intention accurately as well as freely. ⅲ) Since design developed by the 3D digital model can be shared on screen by various actors in the course of priduction such designers , merchandisers, and supervisors, it can help communication between and cut the time of feedback.ⅳ) By using the 3D digital model, designers can work from the begining with awareness of actual outcome their design, since the 3D digital model provide animation, which helps designers to envisage visual changes as they apply various items, colors, pattern and fabrics.

  • PDF

Implementation of FES Cycling using only Knee Muscles : A Computer Simulation Study (슬관절 근육만을 이용한 FES 싸이클링 : 컴퓨터 시뮬레이션 연구)

  • 엄광문;김철승;하세카즈노리
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.171-179
    • /
    • 2004
  • The purpose of this study is to generate cycling motion for FES (functional electrical stimulation) using knee muscles only. We investigated the possibility by simulation. The musculoskeletal model used in this simulation was simplified as 5-rigid links and 2 muscles (knee extensor and flexor). For the improvement of the present feedforward control in FES, we included feedback path in the control system. The control system was developed based on the biological neuronal system and was represented by three sub-systems. The first is a higher neuronal system that generates the motion command for each joint. The second is the lower neuronal system that divides the motion command to each muscle. And the third is a sensory feedback system corresponding to the somatic sensory system. Control system parameters were adjusted by a genetic algorithm (GA) based on the natural selection theory. GA searched the better parameters in terms of the cost function where the energy consumption, muscle force smoothness, and the cycling speed of each parameter set (individual) are evaluated. As a result, cycling was implemented using knee muscles only. The proposed control system based on the nervous system model worked well even with disturbances.

Study of Integrated Production-Distribution Planning Using Simulation and Genetic Algorithm in Supply Chain Network (공급사슬네트워크에서 시뮬레이션과 유전알고리즘을 이용한 통합생산분배계획에 대한 연구)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.

A study on the development of the high efficiency condensing heat exchanger (고효율 응축형 열교환기 개발에 관한 연구)

  • Lee, Geum-Bae;Park, Sang-Il;Park, Jun-Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.589-601
    • /
    • 1997
  • A computer simulation program of a high efficiency condensing heat exchanger is developed. The flue gas flows outside bare tube bundles both in strong cross flow and in weak counter flow and the cooling water inside the tubes. Condensing heat exchangers achieve high efficiency by reducing flue-gas temperatures to a level at which most of the water vapor in the flue gas is condensed and the latent heat associated with phase change of the water is recovered. The computer model has been verified by comparison with measured data. To verify the model, heat transfer coefficient was adjusted, along with the mass transfer diffusion coefficient and pressure drop coefficient, to achieve agreement between predicted and measured data. The efficiencies of heat exchanger increase 2.3 ~ 8.1% by condensations of 6.3 ~ 62.6% of the water vapor in the flue gas.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.

Study on an algorithm for atmospheric correction of Landsat TM imagery using MODTRAN simulation

  • Oh, Sung-Nam;Yu, Sung-Yeol;Lee, Hyun-Kyung;Kim, Yong-Sup;Park, Kyung-Won
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.103-109
    • /
    • 1998
  • A technique on atmospheric correction algorithm for a single band (0.76-0.90 $\mu$m) reflective of Landsat TM imagery has been developed using a radiation transfer model simulation. It proceeds in two steps: First, calculation of the surface reflectance of each pixel based on precomputed planetary albedo functions for actual atmospheres(e. g. radiosonde) and two kinds of atmospheric visibility states. Second, approximate correction of the adjacency pixel effect by taking into account the average reflectance in an 7 $\times$ 7 pixel neighbourhood and using appropriate land cover classification in reflectance. The correction functions are provided by MODTRAN model.

  • PDF

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

A method for FMS flexibility evaluation with computer simulation (컴퓨터 시뮬레이션에 의한 FMS 유연성의 평가방법 연구)

  • 문기주;양승만
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.20 no.43
    • /
    • pp.277-285
    • /
    • 1997
  • In this paper, the definition to flexibility is examined through the literature and re-classified to set up an evaluation model. Flexibility is classified into three categories to find the flexibility types for evaluation. The flexibility type called as manufacturing flexibility is defined and a model is developed to make the performance evaluation possible, The manufacturing flexibility has a heavy relationship to the machine flexibility; and 5 flexibility types out of 8 have relationship to the machine flexibility. This indicates that it is possible to have a pretty good evaluation measure if the machine flexibility related types could be evaluated using a model. There are four different inter-arrival times in the model. A big time saving is observed if the processing time is set equal to 72 second. This indicates that a flexibility affects the system a lot if the inter-arrival time is close to the processing time. The model used in this paper includes multi-processes in a production line with machine failure. However, development of realistic models with buffer between processes and some of the flexibility types not included in this model are remained for further research.

  • PDF