• Title/Summary/Keyword: Computer aided design system

Search Result 575, Processing Time 0.022 seconds

Development of Performance Test Equipment for Easy-Hill Assist Valve (EHA 밸브 성능시험 장치 개발)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • When a manual transmission equipped car stops on an incline where the nose of the car is higher than the rear, hill-start control or hill-holder could prevent the vehicle from rolling backward as the car moves forward. The easy-hill assist valve consists of a check valve and a needle type ON/OFF solenoid valve connected in parallel; it is a hydraulic actuator that can maintain brake pressure using an electrical signal from the ECU. As the EHA valve is a safety-related component of the brake system, high reliability as well as superior dynamic performance is required for it to be applied in commercial vehicles. This paper presents the design of the EHA valve as a piece of equipment that can simulate the brake actuation pressure with a pressurizing piston. Following specific test standards, the experimental results validate the implemented functions of the test equipment, proving the test stand to be effective for the performance and endurance of the EHA valve.

Design and Fabrication of Implantable LC Resonant Blood Pressure Sensor (인체 삽입용 LC 공진형 혈압 센서 디자인 및 제작)

  • Kim, Jin-Tae;Kim, Sung Il;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • In this paper, we present a MEMS (micro-electro-mechanical system) implantable blood pressure sensor which has designed and fabricated with consideration of size, design flexibility, and wireless detection. Mechanical and electrical characterizations of the sensor were obtained by mathematical analysis and computer aided simulation. The sensor is composed of two coils and a air gap capacitor formed by separation of the coils. Therefore, the sensor produces its resonant frequency which is changed by external pressure variation. This frequency movement is detected by inductive coupling between the sensor and an external antenna coil. Theoretically analyzed resonant frequency of the sensor under 760 mmHg was calculated to 269.556 MHz. Fused silica was selected as sensor material with consideration of chemical and electrical reaction of human body to the material. $2mm{\times}5mm{\times}0.5mm$ pressure sensors fitted to radial artery were fabricated on the substrates by consecutive microfabrication processes: sputtering, etching, photolithography, direct bonding and laser welding. Resonant frequencies of the fabricated sensors were in the range of 269~284 MHz under 760 mmHg pressure.

3D-printing-based Combinatorial Experiment for Al-Si-Cu-Mg Alloys (금속 3D 프린팅 적층 제조 공정 기반 Al-Si-Cu-Mg 합금 조합 실험)

  • Song, Yongwook;Kim, Jungjoon;Park, Suwon;Choi, Hyunjoo
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.233-239
    • /
    • 2022
  • Aluminum alloys are extensively employed in several industries, such as automobile, aerospace, and architecture, owing to their high specific strength and electrical and thermal conductivities. However, to meet the rising industrial demands, aluminum alloys must be designed with both excellent mechanical and thermal properties. Computer-aided alloy design is emerging as a technique for developing novel alloys to overcome these trade-off properties. Thus, the development of a new experimental method for designing alloys with high-throughput confirmation is gaining focus. A new approach that rapidly manufactures aluminum alloys with different compositions is required in the alloy design process. This study proposes a combined approach to rapidly investigate the relationship between the microstructure and properties of aluminum alloys using a direct energy deposition system with a dual-nozzle metal 3D printing process. Two types of aluminum alloy powders (Al-4.99Si-1.05Cu-0.47Mg and Al-7Mg) are employed for the 3D printing-based combined method. Nine types of Al-Si-Cu-Mg alloys are manufactured using the combined method, and the relationship between their microstructures and properties is examined.

Development of Feature-Based 3D CAD Assembly Data Simplification System for Equipment and Materials (특징형상 기반 기자재 3D CAD 조립체 데이터 간략화 시스템 개발)

  • Kim, Byung Chul;Kwon, Soonjo;Park, Sunah;Mun, Duhwan;Han, Soonhung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1075-1084
    • /
    • 2014
  • It is necessary to construct an equipment catalog in plant design. A different level of detail may be needed for the three-dimensional (3D) computer aided design (CAD) data for equipment, depending on the purpose. Equipment suppliers provide CAD data with high complexity, whereas plant designers need CAD data with low complexity. Therefore, it is necessary to simplify the 3D CAD assembly data. To resolve this issue, a system for automatically simplifying the 3D CAD assembly data of equipment was developed. This paper presents the architecture of the system, the detailed functions of the system, and a neutral data format used for uploading simplified 3D CAD assembly data to a plant 3D CAD system. In addition, experiment results using the prototype system are explained.

Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study

  • Lee, Du-Hyeong;An, Seo-Young;Hong, Min-Ho;Jeon, Kyoung-Bae;Lee, Kyu-Bok
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.207-213
    • /
    • 2016
  • PURPOSE. A recently introduced direct drill-guiding implant surgery system features minimal tolerance of surgical instruments in the metal sleeve by using shank-modified drills and a sleeve-incorporated stereolithographic guide template. The purpose of this study was to evaluate the accuracy of this new guided surgery system in partially edentulous patients using geometric analyses. MATERIALS AND METHODS. For the study, 21 implants were placed in 11 consecutive patients using the direct drill-guiding implant surgery system. The stereolithographic surgical guide was fabricated using cone-beam computed tomography, digital scanning, computer-aided design and computer-assisted manufacturing, and additive manufacturing processes. After surgery, the positional and angular deviations between planned and placed implants were measured at the abutment level using implant-planning software. The Kruskal-Wallis test and Mann-Whitney U test were used to compare the deviations (${\alpha}=.05$). RESULTS. The mean horizontal deviations were 0.593 mm (SD 0.238) mesiodistally and 0.691 mm (SD 0.344) buccolingually. The mean vertical deviation was 0.925 mm (SD 0.376) occlusogingivally. The vertical deviation was significantly larger than the horizontal deviation (P=.018). The mean angular deviation was 2.024 degrees (SD 0.942) mesiodistally and 2.390 degrees (SD 1.142) buccolingually. CONCLUSION. The direct drill-guiding implant surgery system demonstrates high accuracy in placing implants. Use of the drill shank as the guiding component is an effective way for reducing tolerance.

Design and Implementation of Intelligent Agent based Margin Push Multi-agent System for Internet Auction (인터넷 경매를 위한 지능형 에이전트 기반 마진 푸쉬 멀티에이전트 시스템 설계 및 구현)

  • Lee, Geun-Wang;Kim, Jeong-Jae;Lee, Jong-Hui;O, Hae-Seok
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.167-172
    • /
    • 2002
  • Recently, some of people are keep in research and development of the further more efficient and convenient auction systems using intelligent software agents in electronic commerce. The purpose of this thesis is that a simple auction system has web bulletin boards, is aided by intelligent agent, and generates pertinent auction duration time and starting price for auction goods of auctioneer into a auction system, then the auctioneer gets the highest margin. The seller who want to sell goods, is using internet sends mail that has information for goods to agent of internet auction system. The agent undertake filtering process for already learned information about similar goods. And it calculate duration time and start price from stored bidding history database. In this thesis we propose a mailing agent system pushing information in internet auction that enables to aid decision for auctioneer about the starting time and price which delivers the highest margin.

Manufacturing Information Calculation System for Production Automation of 3-dimensional Template Used to Evaluate Shell Plate Completeness (선체 곡판 완성도 평가용 3차원 곡형의 제작 자동화를 위한 생산 정보 산출 시스템)

  • Ryu, Cheolho;Son, Seunghyeok;Shen, Huiqiang;Kim, Youngmin;Kim, Byeongseop;Jung, ChangHwan;Hwang, InHyuck;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.136-143
    • /
    • 2018
  • 3-D templates are produced to evaluate completeness of the shell plates during the forming process, which is an essential step for the ship production. They are mostly produced in advance during the detail/production design stage, but occasionally they are requested by the shell plate forming department, because it is impossible to predict accurately the necessities of them at the design stage. This results in a huge loss of man-hour and a bottleneck. In order to resolve this issue while reducing the dependence on other department, the process of manufacturing the 3-D templates needs to be automated. Therefore, this study proposes an automatic system that calculates the manufacturing information of the 3-D templates with only geometric information of the shell plates. The system considers the thickness and the cutting method of the parts of the 3-D templates and some options are provided to reflect the intention of the worker.

Evaluation of the accuracy of provisional restorative resins fabricated using dental 3D printers (치과용 3D 프린터로 제작된 임시 수복용 레진의 정확도 평가)

  • Kim, Min-su;Kim, Won-Gi;Kang, Wol
    • Journal of Korean society of Dental Hygiene
    • /
    • v.19 no.6
    • /
    • pp.1089-1097
    • /
    • 2019
  • Objectives: The purpose of this study is to assess the accuracy of provisional restorative resins fabricated using dental three-dimensional (3D) printers. Methods: Provisional restorative resins were fabricated using the first molar of the right mandibular. Three groups comprising a total of 24 samples of such resins were fabricated. The prepared abutment was scanned initially and then designed using a computer-aided design (CAD) software. The conventional subtractive manufacturing system was employed to fabricate the first group of resins, while the second and third groups were fabricated using a digital light processing (DLP) 3D printer and a stereolithography (SLA) 3D printer, respectively. The internal surfaces of the resins were scanned and 3D measurements of the resins were taken to confirm their accuracy. Results: The root-mean-square deviation (RMS±SD) of the accuracy of the resins fabricated using the conventional subtractive manufacturing system, DLP 3D printer, and SLA 3D printer were 68.83±2.22 ㎛, 74.63±6.23 ㎛, and 61.74±4.09 ㎛, respectively. A one-way analysis of variance (ANOVA) test showed significant differences between the three groups (p < 0.05). Conclusions: Provisional restorative resins fabricated using DLP and SLA 3D printers demonstrated clinically-acceptable results.

P-value significance level test for high-performance steel fiber concrete (HPSFC)

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin;Marar, Khaled
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.485-493
    • /
    • 2018
  • Statistical analysis has found useful application in the design of experiments (DOE) especially optimization of concrete ingredients however, to be able to apply the concept properly using computer aided applications there has to be an upper and lower limits of responses fed to the system. In this study, the production of high-performance steel fiber concrete (HPSFC) at five different fiber addition levels by volume with two aspect ratios of 60 and 83 were studied under two curing methods completely dry cured (DC) and moist cured (MC) conditions. In other words, this study was carried out for those limits based on material properties available in North Cyprus. Specimens utilized were cubes 100 mm size casted and cured for 28 days and tested for compressive strength. Minitab 18 statistical software was utilized for the analysis of results at a 5 per cent level of significance. Experimentally, it was observed that, there was fluctuation in compressive strength results for the two aspect ratios and curing regimes. On the other hand P-value hypothesis evaluation of the response showed that at the stated level of significance, there was a statistically significant difference between dry and moist curing conditions. Upper and lower limit values were proposed for the response to be utilized in DOE for future studies based on these material properties. It was also suggested that for a narrow confidence interval and accuracy of the system, future study should increase the sample size.

The Performance Test of SCR System in a Heavy-Duty Diesel Engine (대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.