• Title/Summary/Keyword: Computer System Design

Search Result 8,258, Processing Time 0.04 seconds

Optical Monte Carlo Simulation on Spatial Resolution of Phosphor Coupled X-ray Imaging Detector (형광체 결합형 X선 영상검출기의 공간 해상력 몬테카를로 시뮬레이션)

  • Kang, Sang-Sik;Kim, So-Yeong;Shin, Jung-Wook;Heo, Sung-Wook;Kim, Jae-Hyung;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.328-328
    • /
    • 2007
  • Large area matrix-addressed image detectors are a recent technology for x-ray imaging with medical diagnostic and other applications. The imaging properties of x-ray pixel detectors depend on the quantum efficiency of x-rays, the generated signal of each x-ray photon and the distribution of the generated signal between pixels. In a phosphor coated detector the light signal is generated by electrons captured in the phosphor screen. In our study we simulated the lateral spread distributions for phosphor coupled detector by Monte Carlo simulations. Most simulations of such detectors simplify the setup by only taking the conversion layer into account neglecting behind. The Monte Carlo code MCNPX has been used to simulate the complete interaction and subsequent charge transport of x-ray radiation. This has allowed the analysis of charge sharing between pixel elements as an important limited factor of digital x-ray imaging system. The parameters are determined by lateral distribution of x-ray photons and x-ray induced electrons. The primary purpose of this study was to develop a design tool for the evaluation of geometry factor in the phosphor coupled optical imaging detector. In order to evaluate the spatial resolution for different phosphor material, phosphor geometry we have developed a simulation code. The developed code calculates the energy absorption and spatial distribution based on both the signal from the scintillating layer and the signal from direct detection of x-ray in the detector. We show that internal scattering contributes to the so-called spatial resolution drop of the image detector. Results from the simulation of spatial distribution in a phosphor pixel detector are presented. The spatial resolution can be increased by optimizing pixel size and phosphor thickness.

  • PDF

Implementation and Application of the EDISON platform's integrated file management service (EDISON 플랫폼의 통합 파일관리 서비스 구현 및 적용)

  • Ma, Jin;Seo, Jerry;Ruth-Lee, Jong suk;Park, Min jae
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.71-79
    • /
    • 2016
  • As computer technology continues to evolve, the Computational Sciences utilized in Physics, Chemistry, Materials Science, and Life Sciences have been attracting more attention. In Korea, to compensate for the drawbacks in Computational Science, students and researchers have been using the EDISON platform. The EDISON platform provides a web portal service for education and research and an environment for addressing complex issues involving five fields, e.g., Computational Fluid Dynamics (CFD), Nanophysics, Computational Chemistry, Structural Dynamics, and Computational Design. As the platform and user scale increase beyond service provision, the need for efficient operation of its currently running data management system is on the rise. In this study, we resolve the data synchronization issues between the existing EDISON platform and web portal. As the EDISON platform is integrated with the web portal, a file management service is implemented to integrate the management of user data and files, which ultimately improves the overall efficiency of file management.

A Web-based Simulation Environment based on the Client/Server Architecture for Distance Education: SimDraw (원격교육을 위한 클라이언트/서버구조의 웹 기반 시뮬레이션 환경 : SimDraw)

  • 서현곤;사공봉;김기형
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1080-1091
    • /
    • 2003
  • Recently, the distance education has been rapidly proliferated with the rapid growth of the Internet and high speed networks. There has been relatively much research with regard to online lecture (teaching and studying) tools for the distance education, compared to the virtual laboratory tools (for self-study and experiments). In this paper, we design and implement a web-based simulation tool, named as SimDraw, for the virtual laboratory in the distance education. To apply the web-based simulation technology into the distance education, some requirements should be met; firstly, the user interface of the simulation should be very easy for students. Secondly, the simulation should be very portable to be run on various computer systems of remote students. Finally, the simulation program on remote computers should be very thin so that students can easily install the program onto their computers. To meet these requirements, SimDraw adopts the client/server architecture; the client program contains only model development and animation functions so that no installation of a client program onto student's system is required, and it can be implemented by a Java applet in Web browsers. The server program supports client programs by offering the functions such as remote compiling, model storing, library management, and user management. For the evaluation of SimDraw, we show the simulation process using the example experimentation of the RIP(Routing Information Protocol) Internet routing protocol.

Design and Implementation of OpenCV-based Inventory Management System to build Small and Medium Enterprise Smart Factory (중소기업 스마트공장 구축을 위한 OpenCV 기반 재고관리 시스템의 설계 및 구현)

  • Jang, Su-Hwan;Jeong, Jopil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.161-170
    • /
    • 2019
  • Multi-product mass production small and medium enterprise factories have a wide variety of products and a large number of products, wasting manpower and expenses for inventory management. In addition, there is no way to check the status of inventory in real time, and it is suffering economic damage due to excess inventory and shortage of stock. There are many ways to build a real-time data collection environment, but most of them are difficult to afford for small and medium-sized companies. Therefore, smart factories of small and medium enterprises are faced with difficult reality and it is hard to find appropriate countermeasures. In this paper, we implemented the contents of extension of existing inventory management method through character extraction on label with barcode and QR code, which are widely adopted as current product management technology, and evaluated the effect. Technically, through preprocessing using OpenCV for automatic recognition and classification of stock labels and barcodes, which is a method for managing input and output of existing products through computer image processing, and OCR (Optical Character Recognition) function of Google vision API. And it is designed to recognize the barcode through Zbar. We propose a method to manage inventory by real-time image recognition through Raspberry Pi without using expensive equipment.

A New Incentive Based Bandwidth Allocation Scheme For Cooperative Non-Orthogonal Multiple Access (협력 비직교 다중 접속 네트워크에서 새로운 인센티브 기반 주파수 할당 기법)

  • Kim, Jong Won;Kim, Sung Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.6
    • /
    • pp.173-180
    • /
    • 2021
  • Non Orthogonal Multiple Access (NOMA) is a technology to guarantee the explosively increased Quality of Service(QoS) of users in 5G networks. NOMA can remove the frequent orthogonality in Orthogonal Multiple Access (OMA) while allocating the power differentially to classify user signals. NOMA can guarantee higher communication speed than OMA. However, the NOMA has one disadvantage; it consumes a more energy power when the distance increases. To solve this problem, relay nodes are employed to implement the cooperative NOMA control idea. In a cooperative NOMA network, relay node participations for cooperative communications are essential. In this paper, a new bandwidth allocation scheme is proposed for cooperative NOMA platform. By employing the idea of Vickrey-Clarke-Groves (VCG) mechanism, the proposed scheme can effectively prevent selfishly actions of relay nodes in the cooperative NOMA network. Especially, base stations can pay incentives to relay nodes as much as the contributes of relay nodes. Therefore, the proposed scheme can control the selfish behavior of relay nodes to improve the overall system performance.

The Perception and Needs Analysis of Early Childhood Teachers for Development of a Play-Based Artificial Intelligence Education Program for 5-Year-Olds (만 5세 대상 놀이중심 인공지능 교육 프로그램 개발을 위한 유아교사의 인식과 요구분석)

  • Park, Jieun;Hong, Misun;Cho, Jungwon
    • Journal of Industrial Convergence
    • /
    • v.20 no.5
    • /
    • pp.39-59
    • /
    • 2022
  • We analyze the perceptions and requirements of early childhood teachers for artificial intelligence(AI) education to develop an AI education program for 5-year-olds. As for the research methodology, we conducted a survey and an in-depth interview to extract the AI educational elements centering on the analysis stage, the first stage of the ADDIE model. The research result is that first, it is necessary to design a curriculum that combines the contents of early childhood education and AI education to be naturally accepted as AI education for 5-year-olds. Second, an evaluation tool for AI education that can showcase the teacher's reflection should be developed systematically. Third, it is necessary to support a play-centered AI education support and environment for early childhood teachers. Lastly, it is essential to establish a system that can be continuously operated in the field of early childhood education in consideration of AI education in the non-curricular curriculum. It is expected that in the future, a play-oriented AI education program for 5-year-olds will be developed to spread awareness of AI education for infants and present an AI education approach for each age and stage of learners.

A study to find the operation conditions to minimize carbon footprint using a simulator(EQPS) (시뮬레이터(EQPS)를 이용한 탄소발자국 최소화 운전 방안에 대한 연구)

  • Jisoo Han;Jeseung Lee;Byonghi Lee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.2
    • /
    • pp.37-48
    • /
    • 2024
  • Wastewater treatment plants (WWTPs) are obligated to reduce carbon emissions as a part of public sector greenhouse gas (GHG) emission reduction targets. However, Sewage Statistics(2022) shows that CO2 emissions per wastewater treatment volumes have decreased by only 3.03 % compared to 2020, which is far from enough to meet the Nationally Determined Contribution (NDC) targets. This study aimed to find operational conditions of biological reactors that minimize total carbon footprint (CFP). Total CFP considers both direct emissions from biological processes and indirect emissions from energy consumption. A study was conducted using a computer simulation program which is called as EQPS for a 4-stage BNR WWTP. The results showed that total CFP was reduced by 10.97% compared to the design condition when the mixed liquor recirculation (MLR) was set to 100 % of the influent flow. The N2O emission factor (EF) of the target WWTP was calculated to be 0.138-0.199 %, which is significantly lower than the IPCC default value of 1.6 %. This study proposes a method to minimize total CFP in WWTPs by optimizing biological reactor operation and emphasizes the need for further research on N2O emission reduction.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

A Study on Public Interest-based Technology Valuation Models in Water Resources Field (수자원 분야 공익형 기술가치평가 시스템에 대한 연구)

  • Ryu, Seung-Mi;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.177-198
    • /
    • 2018
  • Recently, as economic property it has become necessary to acquire and utilize the framework for water resource measurement and performance management as the property of water resources changes to hold "public property". To date, the evaluation of water technology has been carried out by feasibility study analysis or technology assessment based on net present value (NPV) or benefit-to-cost (B/C) effect, however it is not yet systemized in terms of valuation models to objectively assess an economic value of technology-based business to receive diffusion and feedback of research outcomes. Therefore, K-water (known as a government-supported public company in Korea) company feels the necessity to establish a technology valuation framework suitable for technical characteristics of water resources fields in charge and verify an exemplified case applied to the technology. The K-water evaluation technology applied to this study, as a public interest goods, can be used as a tool to measure the value and achievement contributed to society and to manage them. Therefore, by calculating the value in which the subject technology contributed to the entire society as a public resource, we make use of it as a basis information for the advertising medium of performance on the influence effect of the benefits or the necessity of cost input, and then secure the legitimacy for large-scale R&D cost input in terms of the characteristics of public technology. Hence, K-water company, one of the public corporation in Korea which deals with public goods of 'water resources', will be able to establish a commercialization strategy for business operation and prepare for a basis for the performance calculation of input R&D cost. In this study, K-water has developed a web-based technology valuation model for public interest type water resources based on the technology evaluation system that is suitable for the characteristics of a technology in water resources fields. In particular, by utilizing the evaluation methodology of the Institute of Advanced Industrial Science and Technology (AIST) in Japan to match the expense items to the expense accounts based on the related benefit items, we proposed the so-called 'K-water's proprietary model' which involves the 'cost-benefit' approach and the FCF (Free Cash Flow), and ultimately led to build a pipeline on the K-water research performance management system and then verify the practical case of a technology related to "desalination". We analyze the embedded design logic and evaluation process of web-based valuation system that reflects characteristics of water resources technology, reference information and database(D/B)-associated logic for each model to calculate public interest-based and profit-based technology values in technology integrated management system. We review the hybrid evaluation module that reflects the quantitative index of the qualitative evaluation indices reflecting the unique characteristics of water resources and the visualized user-interface (UI) of the actual web-based evaluation, which both are appended for calculating the business value based on financial data to the existing web-based technology valuation systems in other fields. K-water's technology valuation model is evaluated by distinguishing between public-interest type and profitable-type water technology. First, evaluation modules in profit-type technology valuation model are designed based on 'profitability of technology'. For example, the technology inventory K-water holds has a number of profit-oriented technologies such as water treatment membranes. On the other hand, the public interest-type technology valuation is designed to evaluate the public-interest oriented technology such as the dam, which reflects the characteristics of public benefits and costs. In order to examine the appropriateness of the cost-benefit based public utility valuation model (i.e. K-water specific technology valuation model) presented in this study, we applied to practical cases from calculation of benefit-to-cost analysis on water resource technology with 20 years of lifetime. In future we will additionally conduct verifying the K-water public utility-based valuation model by each business model which reflects various business environmental characteristics.

A Performance Comparison of the Mobile Agent Model with the Client-Server Model under Security Conditions (보안 서비스를 고려한 이동 에이전트 모델과 클라이언트-서버 모델의 성능 비교)

  • Han, Seung-Wan;Jeong, Ki-Moon;Park, Seung-Bae;Lim, Hyeong-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.3
    • /
    • pp.286-298
    • /
    • 2002
  • The Remote Procedure Call(RPC) has been traditionally used for Inter Process Communication(IPC) among precesses in distributed computing environment. As distributed applications have been complicated more and more, the Mobile Agent paradigm for IPC is emerged. Because there are some paradigms for IPC, researches to evaluate and compare the performance of each paradigm are issued recently. But the performance models used in the previous research did not reflect real distributed computing environment correctly, because they did not consider the evacuation elements for providing security services. Since real distributed environment is open, it is very vulnerable to a variety of attacks. In order to execute applications securely in distributed computing environment, security services which protect applications and information against the attacks must be considered. In this paper, we evaluate and compare the performance of the Remote Procedure Call with that of the Mobile Agent in IPC paradigms. We examine security services to execute applications securely, and propose new performance models considering those services. We design performance models, which describe information retrieval system through N database services, using Petri Net. We compare the performance of two paradigms by assigning numerical values to parameters and measuring the execution time of two paradigms. In this paper, the comparison of two performance models with security services for secure communication shows the results that the execution time of the Remote Procedure Call performance model is sharply increased because of many communications with the high cryptography mechanism between hosts, and that the execution time of the Mobile Agent model is gradually increased because the Mobile Agent paradigm can reduce the quantity of the communications between hosts.