• Title/Summary/Keyword: Computer Network Engineering

Search Result 6,663, Processing Time 0.034 seconds

Intelligent Clustering in Vehicular ad hoc Networks

  • Aadil, Farhan;Khan, Salabat;Bajwa, Khalid Bashir;Khan, Muhammad Fahad;Ali, Asad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3512-3528
    • /
    • 2016
  • A network with high mobility nodes or vehicles is vehicular ad hoc Network (VANET). For improvement in communication efficiency of VANET, many techniques have been proposed; one of these techniques is vehicular node clustering. Cluster nodes (CNs) and Cluster Heads (CHs) are elected or selected in the process of clustering. The longer the lifetime of clusters and the lesser the number of CHs attributes to efficient networking in VANETs. In this paper, a novel Clustering algorithm is proposed based on Ant Colony Optimization (ACO) for VANET named ACONET. This algorithm forms optimized clusters to offer robust communication for VANETs. For optimized clustering, parameters of transmission range, direction, speed of the nodes and load balance factor (LBF) are considered. The ACONET is compared empirically with state of the art methods, including Multi-Objective Particle Swarm Optimization (MOPSO) and Comprehensive Learning Particle Swarm Optimization (CLPSO) based clustering techniques. An extensive set of experiments is performed by varying the grid size of the network, the transmission range of nodes, and total number of nodes in network to evaluate the effectiveness of the algorithms in comparison. The results indicate that the ACONET has significantly outperformed the competitors.

Performance Comparison of Commercial and Customized CNN for Detection in Nodular Lung Cancer (결절성 폐암 검출을 위한 상용 및 맞춤형 CNN의 성능 비교)

  • Park, Sung-Wook;Kim, Seunghyun;Lim, Su-Chang;Kim, Do-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.729-737
    • /
    • 2020
  • Screening with low-dose spiral computed tomography (LDCT) has been shown to reduce lung cancer mortality by about 20% when compared to standard chest radiography. One of the problems arising from screening programs is that large amounts of CT image data must be interpreted by radiologists. To solve this problem, automated detection of pulmonary nodules is necessary; however, this is a challenging task because of the high number of false positive results. Here we demonstrate detection of pulmonary nodules using six off-the-shelf convolutional neural network (CNN) models after modification of the input/output layers and end-to-end training based on publicly databases for comparative evaluation. We used the well-known CNN models, LeNet-5, VGG-16, GoogLeNet Inception V3, ResNet-152, DensNet-201, and NASNet. Most of the CNN models provided superior results to those of obtained using customized CNN models. It is more desirable to modify the proven off-the-shelf network model than to customize the network model to detect the pulmonary nodules.

Comparative Study of PSO-ANN in Estimating Traffic Accident Severity

  • Md. Ashikuzzaman;Wasim Akram;Md. Mydul Islam Anik;Taskeed Jabid;Mahamudul Hasan;Md. Sawkat Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.95-100
    • /
    • 2023
  • Due to Traffic accidents people faces health and economical casualties around the world. As the population increases vehicles on road increase which leads to congestion in cities. Congestion can lead to increasing accident risks due to the expansion in transportation systems. Modern cities are adopting various technologies to minimize traffic accidents by predicting mathematically. Traffic accidents cause economical casualties and potential death. Therefore, to ensure people's safety, the concept of the smart city makes sense. In a smart city, traffic accident factors like road condition, light condition, weather condition etcetera are important to consider to predict traffic accident severity. Several machine learning models can significantly be employed to determine and predict traffic accident severity. This research paper illustrated the performance of a hybridized neural network and compared it with other machine learning models in order to measure the accuracy of predicting traffic accident severity. Dataset of city Leeds, UK is being used to train and test the model. Then the results are being compared with each other. Particle Swarm optimization with artificial neural network (PSO-ANN) gave promising results compared to other machine learning models like Random Forest, Naïve Bayes, Nearest Centroid, K Nearest Neighbor Classification. PSO- ANN model can be adopted in the transportation system to counter traffic accident issues. The nearest centroid model gave the lowest accuracy score whereas PSO-ANN gave the highest accuracy score. All the test results and findings obtained in our study can provide valuable information on reducing traffic accidents.

Developing Smart Grids Based on GPRS and ZigBee Technologies Using Queueing Modeling-Based Optimization Algorithm

  • de Castro Souza, Gustavo Batista;Vieira, Flavio Henrique Teles;Lima, Claudio Ribeiro;de Deus, Getulio Antero Junior;de Castro, Marcelo Stehling;de Araujo, Sergio Granato;Vasques, Thiago Lara
    • ETRI Journal
    • /
    • v.38 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Smart metering systems have become widespread around the world. RF mesh communication systems have contributed to the creation of smarter and more reliable power systems. This paper presents an algorithm for positioning GPRS concentrators to attain delay constraints for a ZigBee-based mesh network. The proposed algorithm determines the number and placement of concentrators using integer linear programming and a queueing model for the given mesh network. The solutions given by the proposed algorithm are validated by verifying the communication network performance through simulations.

Smart Navigation System Implementation by MOST Network of In-Vehicle (차량 내 MOST Network를 이용한 지능형 Navigation 구현)

  • Kim, Mi-jin;Baek, Sung-hyun;Jang, Jong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.82-85
    • /
    • 2009
  • Lately, in the automotive market appeared keywords such as convenience, safety in presentation and increase importance of part of vehicle. Accordingly, the use of many electronic devices was required essentially and communication between electronic devices is being highlighted. Various devices such as controllers, sensors and multimedia device(audio, speakers, video, navigation) in-vehicle connected car network such as CAN, MOST. Modern in-vehicle network managed and operated as purpose of each other. In this Paper, intelligent car navigation considering convenience and safety implement on MOST Network and present system to control CAN Network in vehicle.

  • PDF

Emerging Technologies for Sustainable Smart City Network Security: Issues, Challenges, and Countermeasures

  • Jo, Jeong Hoon;Sharma, Pradip Kumar;Sicato, Jose Costa Sapalo;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.4
    • /
    • pp.765-784
    • /
    • 2019
  • The smart city is one of the most promising, prominent, and challenging applications of the Internet of Things (IoT). Smart cities rely on everything connected to each other. This in turn depends heavily on technology. Technology literacy is essential to transform a city into a smart, connected, sustainable, and resilient city where information is not only available but can also be found. The smart city vision combines emerging technologies such as edge computing, blockchain, artificial intelligence, etc. to create a sustainable ecosystem by dramatically reducing latency, bandwidth usage, and power consumption of smart devices running various applications. In this research, we present a comprehensive survey of emerging technologies for a sustainable smart city network. We discuss the requirements and challenges for a sustainable network and the role of heterogeneous integrated technologies in providing smart city solutions. We also discuss different network architectures from a security perspective to create an ecosystem. Finally, we discuss the open issues and challenges of the smart city network and provide suitable recommendations to resolve them.

Wireless Intrusion Prevention System based on Snort Wireless (Snort Wireless 기반의 무선 침입 방지 시스템)

  • Kim, A-Yong;Jeong, Dae-Jin;Park, Man-Seub;Kim, Jong-Moon;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.666-668
    • /
    • 2013
  • Wireless network environment is spreading due to the increase of using mobile devices, causing wireless network abuse. Network security and intrusion detection have been paid attention to wireless as well as wired existing and studied actively Snort-based intrusion detection system (Intrusion Detection System) is a proven open source system which is widely used for the detection of malicious activity in the existing wired network. Snort Wireless has been developed in order to enable the 802.11 wireless detection feature. In this paper, Snort Wireless Rule is analyzed. Based on the results of the analysis, present the traveling direction of future research.

  • PDF

Design for Recommended System of Movies using Social Network Keyword of Analysis (소셜 네트워크 키워드 분석을 통한 영화 추천 시스템 설계)

  • Yang, Xi-tong;Lee, Jong-Won;Chu, Xun;Pyoun, Do-Kil;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.609-611
    • /
    • 2014
  • Was developed of the web service in Due to the dissemination for IT skills development and smart appliances. In particular, Social network service for should be able to communicate feel free to a user across without distinguishing between production and consumption information in contrast to the existing web service. And strengthen to the information sharing relationships between existing human relation and new human relation. In this paper, a social network service in providing a social networking from users using their communication and information sharing is used to collect and analyze in the keyword. And a design of recommended system of movies for appropriate keyword.

  • PDF

A Novel Active User Identification Method for Space based Constellation Network

  • Kenan, Zhang;Xingqian, Li;Kai, Ding;Li, Li
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.212-216
    • /
    • 2022
  • Space based constellation network is a kind of ad hoc network in which users are self-organized without center node. In space based constellation network, users are allowed to enter or leave the network at any given time. Thus, the number of active users is an unknown and time-varying parameter, and the performance of the network depends on how accurately this parameter is estimated. The so-called problem of active user identification, which consists of determining the number and identities of users transmitting in space based constellation network is discussed and a novel active user identification method is proposed in this paper. Active user identification code generated by transmitter address code and receiver address code is used to spread spectrum. Subspace-based method is used to process received signal and judgment model is established to identify active users according to the processing results. The proposed method is simulated under AWGN channel, Rician channel and Rayleigh channel respectively. Numerical results indicate that the proposed method obtains at least 1.16dB Eb/N0 gains compared with reference methods when miss alarm rate reaches 10-3.

Real-time RL-based 5G Network Slicing Design and Traffic Model Distribution: Implementation for V2X and eMBB Services

  • WeiJian Zhou;Azharul Islam;KyungHi Chang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.9
    • /
    • pp.2573-2589
    • /
    • 2023
  • As 5G mobile systems carry multiple services and applications, numerous user, and application types with varying quality of service requirements inside a single physical network infrastructure are the primary problem in constructing 5G networks. Radio Access Network (RAN) slicing is introduced as a way to solve these challenges. This research focuses on optimizing RAN slices within a singular physical cell for vehicle-to-everything (V2X) and enhanced mobile broadband (eMBB) UEs, highlighting the importance of adept resource management and allocation for the evolving landscape of 5G services. We put forth two unique strategies: one being offline network slicing, also referred to as standard network slicing, and the other being Online reinforcement learning (RL) network slicing. Both strategies aim to maximize network efficiency by gathering network model characteristics and augmenting radio resources for eMBB and V2X UEs. When compared to traditional network slicing, RL network slicing shows greater performance in the allocation and utilization of UE resources. These steps are taken to adapt to fluctuating traffic loads using RL strategies, with the ultimate objective of bolstering the efficiency of generic 5G services.