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Abstract 

 
As 5G mobile systems carry multiple services and applications, numerous user, and 
application types with varying quality of service requirements inside a single physical network 
infrastructure are the primary problem in constructing 5G networks. Radio Access Network 
(RAN) slicing is introduced as a way to solve these challenges. This research focuses on 
optimizing RAN slices within a singular physical cell for vehicle-to-everything (V2X) and 
enhanced mobile broadband (eMBB) UEs, highlighting the importance of adept resource 
management and allocation for the evolving landscape of 5G services. We put forth two unique 
strategies: one being offline network slicing, also referred to as standard network slicing, and 
the other being Online reinforcement learning (RL) network slicing. Both strategies aim to 
maximize network efficiency by gathering network model characteristics and augmenting 
radio resources for eMBB and V2X UEs. When compared to traditional network slicing, RL 
network slicing shows greater performance in the allocation and utilization of UE resources. 
These steps are taken to adapt to fluctuating traffic loads using RL strategies, with the ultimate 
objective of bolstering the efficiency of generic 5G services. 
 
 
Keywords: network model characteristic, RAN slicing, reinforcement learning (RL), 
vehicle-to-everything (V2X), enhanced mobile broadband (eMBB). 
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  1. Introduction 

5G represents not only an advancement in wireless technology, but also a revolution in 
network service design [1]. According to [2-4], eMBB, massive machine-type communi-
cations (mMTC), and ultra reliable low latency communications (uRLLC) are the three key 
5G applications. The primary difference between 4G and 5G is that 5G allows huge 
connections and incredibly low latency. To put it differently, the true strength of 5G is in 
creating a world where everything is connected. The network speed and latency requirements 
for mass terminal usage scenarios are changing, and 5G integrates them into a common 
network architecture. To meet the increasing network demands, 5G network slicing has been 
introduced as a vital technology [1]. 

With the use of network slicing, the physical network can be divided up into a number of 
logical networks to accommodate various applications with different performance and 
flexibility needs. In this paper, we investigate the RAN slicing issue for 5G universal services, 
in particular eMBB and V2X. In our suggested strategy, slicing ratios are initially determined 
using a heuristic-based algorithm with RL. The ratios are then changed to ensure equitable 
resource distribution and improve network performance. Slices that have more resources than 
they require to give the surplus to those that are in need, with transfers computed and carried 
out proportionately based on the resource requirements of each slice. The resources allotted to 
the slices are dynamically adjusted by RL by utilizing experience gained from network 
interaction. By doing this, resource usage is improved while maintaining Quality of Service 
(QoS) [1]. We specifically suggest a 5G network slicing design and traffic model distribution 
based on real-time RL. Based on the outcomes of our simulations, the suggested design 
enhances network efficiency in terms of resource use and outage likelihood.  

Focus on a Specific Service Type, this work explores RAN slicing for 5G generic services, 
particularly eMBB and V2X.Here is the unique contribution of our paper as follows: 

• We use a heuristic-based approach with RL in our method to allocate resources 
dynamically and effectively. 

• We suggest a special system that will allow slices with surplus resources to 
proportionately help those in need. 

• We present Reinforcement Learning, a novel method in network slicing, to improve 
resource consumption while maintaining QoS 

• We compare a standard network slicing model and an RL-based model in real-time, 
assessing performance via PRB and outage probability metrics in our simulations.  

The rest of the paper is arranged in the same way that Chapter 2 introduces the related work, 
Chapter 3 explains the system model design for radio resource slicing and the traffic model 
design for two slicing services, and also analyzes the outage problem of slicing services. 
Chapter 4 discusses the network slicing strategy based on the RL algorithm, detailing the Q-
learning process based on the SoftMax strategy and the optimization solution based on the 
heuristic algorithm. Chapter 5 sets up the simulation that integrates network deployment and 
reinforcement learning strategy, and evaluates performance based on whether real-time 
estimation of online network characteristics is performed. 

2. Related Work 
In the literature, different works proposed solutions to design and control network slices [5-7]. 
A proper architecture for a 5G system based on network slicing to manage mobility between 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 9, September 2023                               2575 

different service networks is proposed in [7]. Conversely, functional decomposition and 
network slicing are proposed in [8] as tools to refine the evolved packet core (EPC). They 
investigate the feasibility of a mobile core network on the basis of network slicing as well as 
functional decomposition. Reference [9] provides a customizable, adaptable software-defined 
(SD)-RAN architecture that focuses on the control plane supporting RAN control applications. 
Reference [10] focuses on admission control choices for network slice requests as well as 
network slice traffic analysis and forecast for each network slice. It proposes a measurement-
based adaptive adjustment of the estimated load. The combined admission control of virtual 
wireless networks is also presented in [11] together with a heuristic approach and slicing. A 
network slicing coordination model based on service demand and resource availability is 
shown in [12]. They provide a framework for a Markovian decision-making process. [13] 
proposes a specific slicing strategy based on reinforcement learning and optimizes the results 
using heuristic algorithms. The choice-making procedure of the agent can be refined using 
diverse RL methodologies which are mentioned in this research work [14]-[17]. In addition, 
for the practical network model, this study [18] tackles virtual resource allocation, stochastic 
distribution, and relative assignment. In this paper, they proposed an offline RL-based 5G 
network slicing design and traffic model distribution. But in our paper, we propose another 
real-time RL-based 5G network slicing design and traffic model distribution and evaluate the 
performance between these two schemes. The simulation results show the improvement in 
terms of network performance with the proposed scheme. 

3. System Model Design for DL 

3.1 System Model and Service Distribution 
The scenario considered is that a cellular Next Generation RAN Access Network (NG-RAN) 
has a gNodeB (gNB) consisting of a single cell. A group of eMBB cellular users are randomly 
distributed around gNB, numbered as m = 1, …, M. And as shown in Fig. 1, several 
independent vehicle flows travel down a straight route. The highway consists of six lanes, 
there are three lanes from the left to the right driving direction, the driving direction for the 
other three lanes is from right to left. According to the length of the highway, it is divided into 
smaller areas, thus the highway section is separated into clusters. Each vehicle is supposed to 
have User Equipment (UE) that can communicate with other UEs in the same cluster. The 
clusters are numbered as j = 1, …, C, the vehicles number in the j-th cluster is i = 1, …, V(j). 

A Poisson process with an arrival rate of 𝜆𝜆𝑎𝑎 treats vehicles on the roadway as entering the 
cell. A Poisson process with a generation rate of 𝜆𝜆𝑚𝑚 generates the number of eMBB UEs [19]. 

 

 
Fig. 1. The cellular network system model. 
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3.2 Network Model for Slicing 
Due to the fact that eMBB demands a lot of bandwidth for high data rate, V2X services are 
very latency sensitive, it is necessary to support both V2X and eMBB services simultaneously. 
The network is conceptually split into two slices, we assume V2X slice_ID = 1 and eMBB 
slice_ID = 2. 

The entire cell bandwidth is arranged into Resource Blocks (RBs) with bandwidth B. The 
number of RBs in downlink is denoted as NDL. The slicing process should allocate DL RBs 
among the two slices. To do this, denote 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 as the part of DL resources for slice_ID = s, 
where s = 1,2. 

The relationship is expressed as follows: 
∑ 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷𝑠𝑠 = 1                                                              (1) 

3.3 Traffic Model Design without Slicing Strategy 

3.3.1 V2X Traffic Model 
According to the Poisson arrival model, each vehicle is assumed to generate random packets 
at a rate of 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛  packets/second [20]. The size of the message is 𝑆𝑆𝑚𝑚 . The messages are 
transmitted utilizing DL resources in cellular mode [21]. The average number of PRBs 
required for each transmission time interval (TTI) for V2X users with slice_ID = 1 in DL, 
denoted as 𝜏𝜏1,𝐷𝐷𝐷𝐷, can be written as: 

𝜏𝜏1,𝑥𝑥 =
∑ ∑ ∑ 𝑚𝑚(𝑗𝑗,𝑖𝑖,𝑡𝑡)⋅𝑆𝑆𝑚𝑚

𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒(𝑗𝑗,𝑖𝑖,𝑡𝑡)
𝑉𝑉(𝑗𝑗)
𝑖𝑖=1

𝐶𝐶
𝑗𝑗=1

𝑇𝑇
𝑡𝑡=1

𝑇𝑇⋅𝐵𝐵⋅𝐹𝐹𝑑𝑑
                                                     (2) 

   where x∈{DL}, represents the link type, The number of messages sent by the vehicles is 
given by m(j,i,t), for the j-th cluster and in the t-th TTI, the spectral efficiency of the downlink 
is written by 𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑥𝑥, TTI duration is denoted as 𝐹𝐹𝑑𝑑, and T is the number of TTIs utilized to 
determine the time window for calculating the average value. 

3.3.2 eMBB Traffic Model 
Regarding the eMBB service, each eMBB user generates a session that requires a certain 
guaranteed bit rate. A Poisson process is followed as the session generation model with a rate 
of 𝜆𝜆𝑒𝑒 (sessions/s) and an exponential distribution of session durations averaged over 𝑇𝑇𝑒𝑒. These 
users transmit PRBs allocated to the eMBB slice in the downlink. For eMBB users with slice_ 
ID = 2, the average number of PRBs needed in DL to support a specific guaranteed bit rate Rb 
is denoted as 𝜏𝜏2,𝐷𝐷𝐷𝐷, can be written as: 

𝜏𝜏2,𝑥𝑥 = ∑ ∑ 𝜌𝜌𝑥𝑥(𝑚𝑚,𝑡𝑡)𝑀𝑀
𝑚𝑚=1

𝑇𝑇
𝑡𝑡=1

𝑇𝑇
                                                                (3) 

    where x∈{DL}, 𝜌𝜌𝑥𝑥(𝑚𝑚, 𝑡𝑡) is the required PRBs number by the m-th user in the downlink, 
in the t-th TTI to get the needed bit rate Rb. 𝜌𝜌𝑥𝑥(𝑚𝑚, 𝑡𝑡) = 𝑅𝑅𝑏𝑏

𝑆𝑆𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑥𝑥∗𝐵𝐵
. 𝜏𝜏2,𝐷𝐷𝐷𝐷 which is calculated 

within a time window T . 

3.4 Outage Problem for Slicing 
The objective is determining the optimal slice ratios 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷  to maximize the total resource 
utilization subject to the constraint of meeting the demands for slice users [22], [23]. 

There is a constraint for the total DL resource utilization 𝑈𝑈𝐷𝐷𝐷𝐷, which states that the total 
resources allocated to this slice by the RAN slicing cannot be exceeded by the sum of the slice, 
i.e., 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 ⋅ 𝑁𝑁𝐷𝐷𝐷𝐷 . If not, an outage situation will be caused, and the utilization is limited 
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to 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 ⋅ 𝑁𝑁𝐷𝐷𝐷𝐷. So, it can be defined as: 
𝑈𝑈𝐷𝐷𝐷𝐷 = ∑ min (𝜏𝜏𝑠𝑠,𝐷𝐷𝐷𝐷, 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 ⋅ 𝑁𝑁𝐷𝐷𝐷𝐷𝑠𝑠 )                                        (4) 

where total downlink resources utilization 𝑈𝑈𝐷𝐷𝐷𝐷  is the sum across all slices 𝑠𝑠 ,of the 
minimum between 𝜏𝜏𝑆𝑆,𝐷𝐷𝐷𝐷 which seems to be the demand for resources in slice 𝑠𝑠 for DL and the 
resource allocated to that slice 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷.𝑁𝑁𝐷𝐷𝐷𝐷. 

Accordingly, the downlink optimization problem is defined as maximizing the DL resource 
utilization while guaranteeing that the outage probability is less than a maximum allowable 
limit 𝑃𝑃𝑜𝑜𝑛𝑛𝑡𝑡. Formally, this problem is stated as follows: 

max
𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷

𝑈𝑈𝐷𝐷𝐷𝐷                                                                            (5) 

s.t. Pr�𝜏𝜏𝑠𝑠,𝐷𝐷𝐷𝐷 ≥ 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 ⋅ 𝑁𝑁𝐷𝐷𝐷𝐷� < 𝑝𝑝𝑜𝑜𝑛𝑛𝑡𝑡 𝑠𝑠 = 1,2                      (5a) 
∑ 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 = 1𝑠𝑠                                                (5b) 

    where 𝑈𝑈𝐷𝐷𝐷𝐷 is resource utilization, 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 represents the ratio of downlink resources allocated 
to as specific slice (s). The operator indicates that the optimization tries to find the value of 
𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 that will maximize 𝑈𝑈𝐷𝐷𝐷𝐷. (5a) constraint ensures that the probability (Pr) of 𝜏𝜏𝑠𝑠,𝐷𝐷𝐷𝐷 (amount 
of traffic on slice s in the downlink direction) exceeding the product of the downlink resource 
allocation ratio  𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 and the total number of DL resources 𝑁𝑁𝐷𝐷𝐷𝐷 is less than a given outage 
probability limit  𝑝𝑝𝑜𝑜𝑛𝑛𝑡𝑡. This constraint applies to all slices (s=1,2). (5b) constraints ensure that 
the sum of the Dl resource allocation ratios all slices (s) equals one, implying that all available 
resources must be allocated. 

4. Network Slicing Strategy with RL Algorithm 
RAN slicing is essentially a problem of optimization of network resource allocation, and we 
should select the optimal slicing ratio from a series of slicing ratios. That is, the optimal slicing 
ratio is selected based on the resulting resource utilization performance. For this reason, we 
decided to use reinforcement learning and low-complexity heuristics to solve this problem. 
Fig. 2 shows the overall approach. A slicing controller is considered to decide the slicing ratio, 
𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 for each slice. There are two main parts in the operation of the slicing controller. In the 
initial segment, an RL algorithm identifies some intermediate slicing ratios, referred to as 𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷. 
The second part, which is a heuristic method, was added afterward. It takes the RL algorithm 
result as input and alters the slicing ratios to get the final slicing ratios 𝛼𝛼𝑠𝑠,𝐷𝐷𝐷𝐷 . In the next 
sections, we will describe the combination in detail, respectively. 
 

 
Fig. 2. RL-based RAN slicing strategy. 

4.1 Q-learning Strategy 
Assume an RL algorithm is performed for the downlink to determine 𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷. The state at the 
time ′𝑡𝑡′, 𝑠𝑠(𝑡𝑡), for our reinforcement learning approach is made up of the rewards of previous 
actions (𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑠𝑠), other significant network performance indicators, and the current and 
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demanded resource allocations for V2X and eMBB services 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑉𝑉2𝑋𝑋) , 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵). The state is therefore described as: 

𝑠𝑠(𝑡𝑡)  = {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑉𝑉2𝑋𝑋), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑝𝑝𝑡𝑡𝑎𝑎𝑎𝑎𝑐𝑐𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵), 
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑑𝑑𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑑𝑑𝑉𝑉2𝑋𝑋), 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡_(𝑑𝑑𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑑𝑑𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵), 

                          𝑃𝑃𝑝𝑝𝑠𝑠𝑡𝑡𝑟𝑟𝑒𝑒𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑𝑠𝑠, 𝑎𝑎𝑡𝑡ℎ𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑡𝑡𝑛𝑛𝑎𝑎𝑐𝑐𝑛𝑛 𝑝𝑝𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎𝑐𝑐𝑚𝑚𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑐𝑐𝑡𝑡𝑐𝑐𝑎𝑎𝑐𝑐𝑠𝑠}                                (6) 
 
Since the paper discusses the problem of slicing based on two service types, we set 20 slicing 
actions based on V2X and eMBB, the action set is: 

�
𝛽𝛽1,𝑥𝑥(𝑛𝑛) = 0.05𝑛𝑛

𝛽𝛽2,𝑥𝑥(𝑛𝑛) = 1 − 0.05𝑛𝑛                                                 (7)     

    where  𝑛𝑛 = 1,2, … ,20,𝑥𝑥 = {𝐷𝐷𝐷𝐷} ,  𝛽𝛽1,𝑥𝑥(𝑛𝑛)  is the fraction of the PRB reserved for V2X 
service and 𝛽𝛽2,𝑥𝑥(𝑛𝑛) is the fraction of the PRB reserved for eMBB service. 
In the procedure of RL, trying different action 𝑝𝑝𝑘𝑘 (different slicing ratios) to find an optimal 
solution. As the result of the action selection, the process of RL can get a reward 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘), 
which evaluates how good the outcome of the action is in regard to the desired optimal goal. 
On the basis of reward, the decision-making of the RL algorithm can be adjusted, to gradually 
learn the actions that lead to the highest reward [24]. Selecting an action involves striking a 
balance between exploitation (doing actions with high rewards) and exploration (trying 
different actions to gain knowledge from them) [25]. 

In this paper, the considered RL algorithm is Q-learning, which is based on SoftMax 
decision and allows for the long-term exploration and exploitation of all feasible actions [26]. 
Therefore, the reward can be determined [27]. The next section will go through the details of 
the reward function and how the Q-learning algorithm works. 

4.1.1 Reward Computation 
The appropriate reward mechanism should be in line with the action's potential. On this basis, 
for a selected action 𝑝𝑝𝑘𝑘 with the corresponding slicing ratio 𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷(𝑛𝑛), a normalized resource 
utilization 𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) function can be used to calculate the reward for slice s, defined as the 
proportion of the resources allocated for the related action to the total resources actually 
consumed. 
     For the V2X slice (s=1): 

𝜓𝜓1,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) = 𝜏𝜏1,𝐷𝐷𝐷𝐷
𝛽𝛽1,𝐷𝐷𝐷𝐷(𝑘𝑘)⋅𝑁𝑁𝐷𝐷𝐷𝐷

                                                     (8) 
     For the eMBB slice (s=2): 

𝜓𝜓2,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) = 𝜏𝜏2,𝐷𝐷𝐷𝐷
𝛽𝛽2,𝐷𝐷𝐷𝐷(𝑘𝑘)⋅𝑁𝑁𝐷𝐷𝐷𝐷

                                                     (9) 

According to these equations, the reward 𝑅𝑅𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) as a consequence of the action 𝑝𝑝𝑘𝑘 is 
described as: 

𝑅𝑅𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) = �
𝑐𝑐𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑎𝑎𝑘𝑘)      𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) ≤ 1
𝑐𝑐−𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑎𝑎𝑘𝑘)     𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) > 1

                               (10) 

In (10), the reward function increases exponentially to a maximum at 𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) = 1 as 
long as the value of 𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) is between 0 and 1. Thus, the actions that lead to an increase in 
this value, i.e., lead to higher utilization, also receive greater reward feedback. 

On the contrary, if 𝜓𝜓𝑠𝑠,𝑥𝑥(𝑝𝑝𝑥𝑥) > 1, this case represents that slice s will have an outage. 
Therefore, the reward will be reduced. Moreover, since the total reward must consider the 
action effect on all the slices s = 1, 2, it is generally described as the geometric mean of the 
rewards for each slice: 
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𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) = �∏ 𝑅𝑅𝑠𝑠,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘)2
𝑠𝑠=1 �

1
𝑠𝑠                                (11) 

   where 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) represents the reward associated with each slice ‘s’ for a given 
action 𝑝𝑝𝑘𝑘 . The reward for each slice is calculated based on whether the allocated 
resources meet the demands of that slice. Total rewards are computed as the geometric 
mean of the individual slice rewards. 

4.1.2 Q-values Computation 
The ultimate objective of the slice controller's Q-learning method is to identify the course of 
action that maximizes the anticipated long-term reward for per slice. Q-learning connects with 
the network model during a discrete time period at a set time and calculates the reward for the 
selected action to accomplish this aim. The slice controller maintains experience records for 
actions 𝑝𝑝𝑘𝑘 in accordance with the reward, and the action-value function (also called Q-value) 
is kept in 𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘). For each time step, the values of 𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) are updated according to the 
learning method, where it is single-state and has a null discount rate: 

𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) ← (1 − 𝛼𝛼)𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) + 𝛼𝛼 ⋅ 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘)                   (12) 
    where 𝑅𝑅𝑇𝑇𝑇𝑇𝑇𝑇,𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) is the total reward for performing an action 𝑝𝑝𝑘𝑘  for V2X and eMBB 
slices, and the learning rate is denoted as α, where α∈ (0,1). 𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘) is initialized to an 
arbitrary value at initialization when action 𝑝𝑝𝑘𝑘 has never been used previously. 

4.1.3 Selection Criterion based on SoftMax Policy 
The SoftMax strategy is used to select which actions to take depending on 𝑄𝑄𝐷𝐷𝐷𝐷(𝑝𝑝𝑘𝑘), where the 
selection of different actions is probabilistic. In detail, the probability 𝑃𝑃(𝑝𝑝𝑘𝑘) corresponding to 
the selection of action 𝑝𝑝𝑘𝑘, is described as: 

𝑃𝑃(𝑝𝑝𝑘𝑘) = 𝑒𝑒𝑄𝑄𝐷𝐷𝐷𝐷�𝑎𝑎𝑘𝑘�/𝜏𝜏

∑ 𝑒𝑒𝑄𝑄𝐷𝐷𝐷𝐷�𝑎𝑎𝑗𝑗�/𝜏𝜏𝐴𝐴𝑥𝑥
𝑗𝑗=1

                                                     (13) 

    where 𝜏𝜏 is a positive integer defined as temperature parameter, which affects the selection 
probability [28]. The higher the value of 𝜏𝜏 is, the closer the probability of actions will be to 
the same. On the contrary, a low value of 𝜏𝜏  will result in a large variance in selection 
probability for actions with various Q values. Exploration and exploitation may be 
successfully balanced using the SoftMax strategy, that is, selecting actions having a high 
possibility of yielding a high reward, but also keep exploring new actions with a certain 
probability, it can lead to better decisions in the future [29]. 

4.1.4. Simulation Result (without heuristic solution) 
In the downlink simulation, when running the code, in the MATLAB command window: 
 
episode = 0998: a_k = 007, Gamma1=40.07, Gamma2=91.52, R_DL(V2X) =1.77, R_DL 
(eMBB)=2.02, R_TOT_DL=1.89, beta_V2X=0.35, beta_eMBB=0.65 
episode = 0999: a_k = 003, Gamma1=48.24, Gamma2=92.23, R_DL(V2X) =0.20, R_DL 
(eMBB)=1.72, R_TOT_DL=0.59, beta_V2X=0.15, beta_eMBB=0.85 
episode = 1000: a_k = 011, Gamma1=51.66, Gamma2=81.53, R_DL(V2X) =1.60, R_DL 
(eMBB)=2.47, R_TOT_DL=1.99, beta_V2X=0.55, beta_eMBB=0.45 
 
     where 𝑝𝑝𝑘𝑘 is the action for slicing ratio. “Gamma” is the average number of required RBs 
for each slice. “R_DL” is the reward computation for each slice. “R_TOT_DL” is the total 
reward computation for the downlink.  “beta” is the corresponding slicing ratio for each slice. 
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Two slicing services are included in the implementation, i.e., the sum of the two slicing ratios 
is equal to 1. As can be seen from the above, the network resources are successfully allocated 
to the respective slices. 

The following Fig. 3, is the Q-value based on different episodes for V2X and eMBB UEs: 

 
Fig. 3. Actions VS. Q-values based on different episodes. 

 
In the simulation, the network load is light. In the network, the PRB demand from the 

vehicular UEs is generally lower than that from the eMBB UEs, as shown in the log from the 
Matlab console, so a better slicing strategy should allocate more PRBs to the eMBB service. 

After 1000 episodes, the final Q-value-table indicates that the action#5/#6/#7 are more 
preferable than the other actions. Action#5/#6/#7 corresponds to the PRB ratio for V2X service 
being 0.3, 0.35, 0.4, and the PRB ratio for eMBB being 0.7, 0.65, 0.6, so more PRBs are 
allocated to the eMBB service. 

4.2 Optimization Solution 
In this section, we utilize a heuristic approach to adjust the intermediary slicing ratio, 𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷 
selected through RL based on the resource requirements [30]. 

The idea is based on the actual RB requirements and the slicing ratio 𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷. The scheme 
estimates whether one of the slices has more resources in the downlink than actually needed, 
i.e., 𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷�𝑝𝑝𝐷𝐷𝐷𝐷_𝑠𝑠𝑒𝑒𝑠𝑠� < 1, meanwhile another slice s' has resources that less than required, i.e., 
𝜓𝜓𝑠𝑠,𝐷𝐷𝐷𝐷�𝑝𝑝𝐷𝐷𝐷𝐷_𝑠𝑠𝑒𝑒𝑠𝑠� > 1. In this case, another slice s' can take use of the extra capacity that slice s 
leaves behind ∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷. In detail, the extra capacity is expressed as: 

∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷 = �1 − ψ𝑠𝑠,𝐷𝐷𝐷𝐷�𝑝𝑝𝐷𝐷𝐷𝐷_𝑠𝑠𝑒𝑒𝑠𝑠�� ⋅ 𝜔𝜔                                         (14) 
    where 𝜔𝜔 is a configuration parameter in the range [0,1], in order to leave some margin for 
the variation of RBs demand. For slice s, the slicing ratio will reduce by ∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷, i.e., 𝑝𝑝𝑠𝑠,𝐷𝐷𝐷𝐷 =
𝛽𝛽𝑠𝑠,𝐷𝐷𝐷𝐷 − ∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷, Conversely, for another slice s', the slicing ratio will increase by ∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷, i.e., 
𝑝𝑝𝑠𝑠′,𝐷𝐷𝐷𝐷 = 𝛽𝛽𝑠𝑠′,𝐷𝐷𝐷𝐷 + ∆𝐶𝐶𝑠𝑠,𝐷𝐷𝐷𝐷. 
     Following the optimization illustrated in Fig. 4, a significant performance improvement 
can be observed in the values of V2X and eMBB compared to the scenario without the 
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heuristic method. In both the V2X and eMBB cases, the Q-values now exceed 2 for resource 
allocation based on demand, representing an increase from the sub-2 levels observed when 
using the heuristic method. 
 

 
Fig. 4. Actions VS. optimization V2X and eMBB values. 

5. Performance Evaluation 
In this Section, we employ MATLAB for system-level simulations to examine the efficacy of 
our proposed RAN slicing strategy. 

5.1 Simulation Setup 
The simulation model we utilized is founded on a single-cell hexagonal structure, equipped 
with a gNB. This cell configuration accommodates a channel encompassing 200 RBs, 12 
subcarriers, and a subcarrier spacing of Δf = 30 kHz, mirroring one of the 5G NR numerologies 
we reference. 
     Simulation model considers vehicle UEs that communicate through cellular mode (DL) 
using slice_ID = 1, and eMBB UEs that communicate in cellular mode (DL) using slice_ID = 
2. Vehicular UEs are distributed along two 3-lane highways, eMBB UEs are spread randomly 
in the cell. In Table 1~4, All relevant parameters are summarized. Since we discuss the 
problem of slicing based on two service types, the action of RL is defined as: action 𝑝𝑝𝑘𝑘 
corresponds to 𝛽𝛽1,𝐷𝐷𝐷𝐷(𝑛𝑛) = (0.05𝑛𝑛) , 𝛽𝛽2,𝐷𝐷𝐷𝐷(𝑛𝑛) = (1 − 0.05𝑛𝑛) , where 𝑛𝑛 = 1,2, … ,20,𝑥𝑥 =
{𝐷𝐷𝐷𝐷} . The evaluation results presented are intended to evaluate and demonstrate the 
performance for the RAN slicing strategy in the aspects of PRB utilization, network outage 
probability. 

5.2 Network Deployment 
Fig. 5, below shows the network deployment for the downlink, from where we start the 
simulation, initialize the simulation and the WINNER II channel model, the slicing ratios are 
initialized as well. In the network model, for every drop, the simulation process includes: 
[1] Prepare the simulation for the drop. 
[2] Run the WINNER II channel model for the drop. 
[3] Collect the network characteristics. 
[4] Calculate the PRB utilization. 
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In this Fig. 5, we can set the locations of the gNB, the highways, and every UE. The channel 
model is generated according to the WINNER II B1 (Urban micro-cell) and the SINR of each 
link is estimated from the channel gain. 

 
Fig. 5. Network Deployment for Downlink. 

 
The specific simulation parameters are as follows: 
 

Table 1. General simulation parameters 
Parameters Values 
Cell radius 500m 
Frequency 2.6GHz 
RBs/cell NDL=200RBs 

Path loss model WINNER II B1 (Urban micro-cell) 
Base station antenna gain  5dB 

Height of the gNB 10m 
Time window T 10ms 

TTI duration (Fd) 0.5ms 
Sim. Num. of drops/round 20 

Sim. Num. of round 10 
Ignore online NW characteristics False/True 

 
Table 2. Simulation parameters for V2X 

Parameters Values 
Highway Length 1km 

Num. of lanes 3 in either direction 
Lane width 4m 

Num. of clusters 4 
Size of cluster 250m 
Vehicle speed 80km/h 

Vehicular UE height 1.5m 
Packet arrival rate 𝜆𝜆𝑛𝑛𝑛𝑛𝑛𝑛 200packets/s  
Vehicle arrival rate 𝜆𝜆𝑎𝑎 1UE/s 

Message size (Sm) 300bytes 
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Table 3. Simulation parameters for eMBB 
Parameters Values 

User Equipment arrival rate 𝜆𝜆𝑚𝑚 1UE/s 
UE height 1.5m 

Average session 
generation rate 𝜆𝜆𝑒𝑒 

300/400/500/600 sessions/s 

Guaranteed bit rate Rb 1Mb/s 
Average session duration 120s 

 
Table 4. Simulation parameters for RAN slicing algorithm 

Parameters Values 
Learning rate α 0.1 

Temperature parameter τ  0.1 
BW of PRB 30e3*12 

Probability of selection (SL vs 
Cellular)  0.5 

ω 0.85 
 

Actions of the RL 
algorithm 

20 actions,  
𝑛𝑛 = 1,2, … ,20. 

�
𝛽𝛽1,𝑥𝑥(𝑛𝑛) = 0.05𝑛𝑛

𝛽𝛽2,𝑥𝑥(𝑛𝑛) = 1 − 0.05𝑛𝑛 

 

5.3 Estimation of network characteristics 
During each cycle of the simulation, an exchange of updated slicing ratios and network 
characteristics occurs between the online network model and the slicing controller. The slicing 
controller consists of the offline network model, the reinforcement learning, and the low-
complexity heuristic algorithm. In every round of simulation, the online network run for a 
number of simulations drops. 

During the above simulation, the network characteristics are collected in every simulation 
drop, these network characteristics consist of: 
[1] The number of V2X UEs, eMBB UEs. 
[2] The SINR (in dB) values to all the UEs in all of the downlinks. 
[3] The frequency at which packets arrive for the V2X service, and the rate at which sessions 
are generated for the eMBB service. 

For the processing of network characteristics data, there are two schemes: whether to 
estimate the network characteristics. 

For the estimation scheme, in the slicing controller, when it gets the network characteristics, 
it will estimate the parameters for the probability distributions for each category of the 
characteristics. In the simulation, it will use the “fitdist” function provided by Matlab to fit the 
samples to some distributions. 
[1] For SINR values, it will use the “Normal” distribution for fitting. 
[2] For the packet arrival rates in V2X service, it will use “Poisson” distribution for fitting. 
[3] For the session arrival rates in eMBB service, it will use “Poisson” distribution for fitting. 

The above process of estimating network characteristics denotes as 
“ignore_online_nw_characteristics=False”, it will use the fitted network characteristics to the 
following reinforcement learning. 
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Such a fitting behavior can be disabled by a flag. If disabled, i.e., no estimation of network 

characteristics, some predefined probability distributions with fixed parameters will be used 
instead. This scheme denotes as “ignore_online_nw_characteristics=True”, it will use the 
default network characteristics to the following reinforcement learning. 

It should be noted that all the above simulations are based on using the default network 
characteristics scheme, i.e., “ignore_online_nw_characteristics=True”. In the following 
simulation, we will compare the performance based on the two schemes. 

 

5.4 Performance in terms of PRB Utilization 
 

 
Fig. 6. Simulation round VS. PRB utilization. 

 
In Fig. 6, blue lines are the ones when ignore_online_nw_characteristics=False (i.e., using the 
network characteristics from the online network model for parameters estimation), while the 
red lines are the ones when ignore_online_nw_characteristics=True (i.e., no estimation of 
network characteristics). 
It shows that: 
(1) When using the network characteristics from the online network model for parameters 
estimations before applying the RL algorithms, the PRB utilization is better than when 
ignoring the network characteristics. It demonstrates the benefits in using the fitted network 
characteristics for reinforcement learning. 
(2) The PRB utilization will increase when more rounds of simulation are performed, because 
more network characteristics are available for better parameter estimation, and more samples 
for better RL learning algorithm. 
(3) There are some fluctuations in the curves, which indicates that the simulation time is not 
enough. In this simulation, sim_nr_drops_per_round=20 is too short. In order to make the 
following result smoother, sim_nr_drops_per_round should be larger than, e.g., 100, however, 
it will take longer simulation time. 
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Fig. 7. eMBB session generation rate VS. PRB utilization. 

 
Fig. 7 shows the evolution of the DL PRB utilization when the session generation rate of 

the eMBB service is increasing from 300 sessions/second to 600 sessions/second. 
It shows that: 
(1) Using the online network characteristics for parameters estimation (i.e., 
ignore_online_nw_characteristics=False) will noticeably improve the PRB utilizations, by 
almost 5% - 10%. 
(2) There are some fluctuations in the curves, which indicate that the simulation time is not 
enough. 

 
Fig. 8. Simulation round VS. PRB utilization rate. 

 
In the above Fig. 8, it shows the evolution of the PRB utilization rate (in a range between 

0 and 1) along with the simulation round. The increase of the PRB utilization rate is due to the 
increase of the eMBB session number generated in an average session generation rate 𝜆𝜆𝑒𝑒 =
300 sessions/second according to a Poisson distribution. The blue and the orange dotted lines 
are the linear fitting results, which clearly demonstrate the gain from utilizing the online 
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network characteristics for traffic pattern and SINR measurement estimations. 

5.5 Performance in terms of Outage Probability 
Outage events consider when the demanded PRBs exceed the reserved PRBs for each of the 
services (V2X and eMBB). We can define outage events 𝑂𝑂_𝑉𝑉2𝑋𝑋 and 𝑂𝑂_𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 for each 
service as follows: 

𝑂𝑂𝑉𝑉2𝑋𝑋 = 1𝑎𝑎𝑝𝑝 𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 𝑝𝑝𝑎𝑎𝑐𝑐 𝑉𝑉2𝑋𝑋 > 𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 𝑝𝑝𝑎𝑎𝑐𝑐 𝑉𝑉2𝑋𝑋 𝑎𝑎𝑠𝑠max 𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐 0 
                       𝑂𝑂𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵 = 1𝑎𝑎𝑝𝑝 𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 𝑝𝑝𝑎𝑎𝑐𝑐 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 > 𝑠𝑠𝑎𝑎𝑎𝑎𝑐𝑐𝑐𝑐 𝑝𝑝𝑎𝑎𝑐𝑐 𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒 𝑎𝑎𝑠𝑠max𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐 0                   (15) 
Then overall network outage 𝑂𝑂𝑁𝑁𝑁𝑁 is then given by: 
                                 𝑂𝑂𝑁𝑁𝑁𝑁 = 1 𝑎𝑎𝑝𝑝(𝑂𝑂𝑉𝑉2𝑋𝑋 + 𝑂𝑂𝑒𝑒𝑒𝑒𝐵𝐵𝐵𝐵) ≥ 1𝑐𝑐𝑎𝑎𝑠𝑠𝑐𝑐 0                                            (16) 
   Where 𝑂𝑂𝑁𝑁𝑁𝑁 calculates the overall network outage. If there is an outage event in either the 
V2X or the eMBB service (or both) is greater than or equal to 1, then 𝑂𝑂𝑁𝑁𝑁𝑁 is set to 1, indicating 
a network outage. If there is no outage event in both services, then 𝑂𝑂𝑁𝑁𝑁𝑁 is set to 0, indicating 
no network outage. 

  
Fig. 9. Simulation round VS. Outage rate. 

 
The above Fig. 9 compares the outage rates whether using the online network 

characteristics for parameters estimations. It also demonstrates the advantage of using the 
online network characteristics (the blue line), which has less probability of outage on average. 

6. Conclusions 
In this paper, we have studied the problem of allocating radio resources among multiple RAN 
slices in the case of V2X and eMBB services that involve downlink communications. A RAN 
slicing strategy has been applied that is based on reinforcement learning and a low-complexity 
heuristic algorithm to determine the resource allocation for the eMBB and V2X slices. In 
particular, we evaluated the performance of real-time RL-based 5G network slicing design and 
traffic model distribution with and without the scheme. Based on eMBB 300 session 
generation rate without the scheme, the cell performance traffic model shows PRB utilization 
rate of 55%, but 72% with the scheme. When we increase the session generation rate from 300 
to 600 for PRB utilization, it increases from 71% to 80% with the slicing strategy model. The 
simulation results also show that it has a less average outage probability with the scheme. The 
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above comparisons in terms of the network performance demonstrate the advantage of using 
real-time RL-based 5G network slicing design and traffic model distribution. 
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