• Title/Summary/Keyword: Computer Aided Engineering

Search Result 1,172, Processing Time 0.024 seconds

A Study on the Weight Optimization for the Passenger Car Seat Frame Part (상용승용차 시트프레임 부품의 중량 최적화에 관한 연구)

  • Jang, In-Sik;Min, Byeong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.155-163
    • /
    • 2006
  • Car seat is one the most important element to make comfortable drivability. It can absorb the impact or vibration during driving state. In addition to those factors, it is needed to have enough strength for passenger safety. From energy efficiency and environmental point of view lighter passenger car seat frame becomes hot issue in the auto industry. In this paper, weight optimization methodology is investigated for commercial car seat frame using CAE. Optimized designs for seat frame are developed using commercially available finite element code(ANSYS) and design of experiment method. At first, car seat frame is modelled using 3-D computer aided design tool(CATIA) and simplified for finite element modelling. Finite element analysis is carried out for the case of FMVSS 202 Head Restraint test to check the strength of the original seat frame. Two base brackets are selected as optimized elements that are the heaviest parts in the seat frame. After finite element analysis for the brackets with similar load condition to the previous test optimization technique is applied for 10% to 50% weight reduction. Design of experiment is utilized to obtain optimization design for the bracket based on the modified 50% weight reduction model in which outer shape of the bracket is conserved. Weight optimization models result in the decrease of the strength in spite of weight reduction. The more design points should be considered to get better optimized model. The more advanced optimization technique may be utilized for more parts of the seat frame to increase whole seat frame characteristics in the future.

Accuracy evaluation of dental model scanner according to occlusal attrition type (교합면의 교모형태에 따른 치과용 모형 스캐너의 정확도 평가)

  • Kim, Dong-Yeon;Kim, Ji-Hwan;Lee, Beom-Il;Lee, Ju-Hee;Kim, Won-Soo;Park, Jin-Young
    • Journal of Technologic Dentistry
    • /
    • v.42 no.4
    • /
    • pp.313-320
    • /
    • 2020
  • Purpose: The purpose of this study is to compare and analyze the accuracy of single crowns based on the type of occlusal surface. Methods: A single crown wax pattern was fabricated in three types of occlusal surface. The prepared wax pattern was replicated with silicone, and stone was injected to create a stone model. The prepared specimens were scanned using a model scanner. Scans were classified into three groups, and each scan was performed six times to analyze the trueness and precision of a single crown. In addition, only the occlusal surface area was analyzed for trueness and precision. Data were analyzed using the Kruskal-Wallis H test, a nonparametric test (α=0.05). Results: With regard to the trueness value of the occlusal scan area, the no occlusal tooth attrition (NA) group showed the largest error of 3.5 ㎛, and the complete occlusal tooth attrition (CA) group showed the lowest value of 3.1 ㎛. The NA group had the greatest precision, and the medium occlusal tooth attrition (MA) group and CA group showed a low precision value of 3.2 ㎛; the difference between the groups was statistically significant (α=0.05). In the color difference map, the CA group showed a lower error than the NA group. Conclusion: The occlusal surface with severe attrition had excellent accuracy, but the accuracy of the group without attrition was low. There were significant differences between groups, but clinically acceptable values were shown.

Study of monolithic 3D integrated-circuit consisting of tunneling field-effect transistors (터널링 전계효과 트랜지스터로 구성된 3차원 적층형 집적회로에 대한 연구)

  • Yu, Yun Seop
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.682-687
    • /
    • 2022
  • In this paper, the research results on monolithic three-dimensional integrated-circuit (M3DICs) stacked with tunneling field effect transistors (TFETs) are introduced. Unlike metal-oxide-semiconductor field-effect transistors (MOSFETs), TFETs are designed differently from the layout of symmetrical MOSFETs because the source and drain of TFET are asymmetrical. Various monolithic 3D inverter (M3D-INV) structures and layouts are possible due to the asymmetric structure, and among them, a simple inverter structure with the minimum metal layer is proposed. Using the proposed M3D-INV, this M3D logic gates such as NAND and NOR gates by sequentially stacking TFETs are proposed, respectively. The simulation results of voltage transfer characteristics of the proposed M3D logic gates are investigated using mixed-mode simulator of technology computer aided design (TCAD), and the operation of each logic circuit is verified. The cell area for each M3D logic gate is reduced by about 50% compared to one for the two-dimensional planar logic gates.

An intelligent method for pregnancy diagnosis in breeding sows according to ultrasonography algorithms

  • Jung-woo Chae;Yo-han Choi;Jeong-nam Lee;Hyun-ju Park;Yong-dae Jeong;Eun-seok Cho;Young-sin, Kim;Tae-kyeong Kim;Soo-jin Sa;Hyun-chong Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.365-376
    • /
    • 2023
  • Pig breeding management directly contributes to the profitability of pig farms, and pregnancy diagnosis is an important factor in breeding management. Therefore, the need to diagnose pregnancy in sows is emphasized, and various studies have been conducted in this area. We propose a computer-aided diagnosis system to assist livestock farmers to diagnose sow pregnancy through ultrasound. Methods for diagnosing pregnancy in sows through ultrasound include the Doppler method, which measures the heart rate and pulse status, and the echo method, which diagnoses by amplitude depth technique. We propose a method that uses deep learning algorithms on ultrasonography, which is part of the echo method. As deep learning-based classification algorithms, Inception-v4, Xception, and EfficientNetV2 were used and compared to find the optimal algorithm for pregnancy diagnosis in sows. Gaussian and speckle noises were added to the ultrasound images according to the characteristics of the ultrasonography, which is easily affected by noise from the surrounding environments. Both the original and noise added ultrasound images of sows were tested together to determine the suitability of the proposed method on farms. The pregnancy diagnosis performance on the original ultrasound images achieved 0.99 in accuracy in the highest case and on the ultrasound images with noises, the performance achieved 0.98 in accuracy. The diagnosis performance achieved 0.96 in accuracy even when the intensity of noise was strong, proving its robustness against noise.

Manufacturing of a Korean Hand Phantom with Human Electrical Properties at 835 MHz and 1,800 MHz Bands (835 MHz 및 1,800 MHz 대역에서 인체의 전기적 특성을 가지는 한국인 손 모양의 팬텀 제작)

  • Choi, Donggeun;Gimm, Yoonmyoung;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.5
    • /
    • pp.534-540
    • /
    • 2013
  • Interest of the hand effect on the electromagnetic wave are internationally increasing with the increase of the use of the mobile phone. IEC TC106(International Electrotechnical Commission, Technical Committee 106) promotes international research exchange program in order to reflect the effect of human hands in the standard assessment method of human exposure dosimetry by the electromagnetic wave of mobile phones. Since current commercialized hand phantom is manufactured by taking into account the average size of westerners and provides only one grip posture, it imposes many restrictions on the accurate SAR measurement. Therefore, the development of proper hand phantom accounting for domestic situation and various grip posture capability is essential in order to analyze the accurate effect of human hand on the exposure estimation. In this paper, a jelly hand phantom suitable for Korean was manufactured with various grip posture capability at 835 MHz and 1,800 MHz bands. Although the tolerances of permittivity and conductivity of the manufactured hand phantom are with ${\pm}10%$ each, it was much less than CTIA(Cellular Telecommunication Industry Association) tolerance of ${\pm}20%$ at both bands. Its 3D CAD(3 Dimensional Computer Aided Design) file which was developed can be utilized for the simulation of human hand effect on SAR measurement of mobile phones. The findings in this study can be utilized for the analysis of human hand effect on SAR measurement of a mobile phone.

Computer Aided Diagnosis System for Evaluation of Mechanical Artificial Valve (기계식 인공판막 상태 평가를 위한 컴퓨터 보조진단 시스템)

  • 이혁수
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.421-430
    • /
    • 2004
  • Clinically, it is almost impossible for a physician to distinguish subtle changes of frequency spectrum by using a stethoscope alone especially in the early stage of thrombus formation. Considering that reliability of mechanical valve is paramount because the failure might end up with patient death, early detection of valve thrombus using noninvasive technique is important. Thus the study was designed to provide a tool for early noninvasive detection of valve thrombus by observing shift of frequency spectrum of acoustic signals with computer aid diagnosis system. A thrombus model was constructed on commercialized mechanical valves using polyurethane or silicon. Polyurethane coating was made on the valve surface, and silicon coating on the sewing ring of the valve. To simulate pannus formation, which is fibrous tissue overgrowth obstructing the valve orifice, the degree of silicone coating on the sewing ring varied from 20%, 40%, 60% of orifice obstruction. In experiment system, acoustic signals from the valve were measured using microphone and amplifier. The microphone was attached to a coupler to remove environmental noise. Acoustic signals were sampled by an AID converter, frequency spectrum was obtained by the algorithm of spectral analysis. To quantitatively distinguish the frequency peak of the normal valve from that of the thrombosed valves, analysis using a neural network was employed. A return map was applied to evaluate continuous monitoring of valve motion cycle. The in-vivo data also obtained from animals with mechanical valves in circulatory devices as well as patients with mechanical valve replacement for 1 year or longer before. Each spectrum wave showed a primary and secondary peak. The secondary peak showed changes according to the thrombus model. In the mock as well as the animal study, both spectral analysis and 3-layer neural network could differentiate the normal valves from thrombosed valves. In the human study, one of 10 patients showed shift of frequency spectrum, however the presence of valve thrombus was yet to be determined. Conclusively, acoustic signal measurement can be of suggestive as a noninvasive diagnostic tool in early detection of mechanical valve thrombosis.

SLEDS:A System-Level Event-Driven Simulator for Asynchronous Microprocessors (SLEDS:비동기 마이크로프로세서를 위한 상위 수준 사건구동식 시뮬레이터)

  • Choi, Sang-Ik;Lee, Jeong-Gun;Kim, Eui-Seok;Lee, Dong-Ik
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.1
    • /
    • pp.42-56
    • /
    • 2002
  • It is possible but not efficient to model and simulate asynchronous microprocessors with the existing HDLs(HARDware Description Languages) such as VHDL or Verilog. The reason it that the description becomes too complex. and also the simulation time becomes too long to explore the design space. Therefore it is necessary to establish a methodology and develop a tool for modeling the handshake protocol of asynchronous microprocessors very easily and simulating it very fast. Under this objective an efficient CAD(Computer Aided Design) tool SLEDS(System Level Event-Driven Simulator) was developed which can evaluate performance of a processor through modeling with a simple description an simulating with event driven engine in the system level. The ultimate goal in the tool SLEDS is to fin the optimal conditions for a system to produce high performance by balancing the delay of each module in the system. Besides SLEDS aims at verifying the design through comparing the expected results with the actual ones by performing the defined behavior.

The Application of Fuzzy Logic to Assess the Performance of Participants and Components of Building Information Modeling

  • Wang, Bohan;Yang, Jin;Tan, Adrian;Tan, Fabian Hadipriono;Parke, Michael
    • Journal of Construction Engineering and Project Management
    • /
    • v.8 no.4
    • /
    • pp.1-24
    • /
    • 2018
  • In the last decade, the use of Building Information Modeling (BIM) as a new technology has been applied with traditional Computer-aided design implementations in an increasing number of architecture, engineering, and construction projects and applications. Its employment alongside construction management, can be a valuable tool in helping move these activities and projects forward in a more efficient and time-effective manner. The traditional stakeholders, i.e., Owner, A/E and the Contractor are involved in this BIM system that is used in almost every activity of construction projects, such as design, cost estimate and scheduling. This article extracts major features of the application of BIM from perspective of participating BIM components, along with the different phrases, and applies to them a logistic analysis using a fuzzy performance tree, quantifying these phrases to judge the effectiveness of the BIM techniques employed. That is to say, these fuzzy performance trees with fuzzy logic concepts can properly translate the linguistic rating into numeric expressions, and are thus employed in evaluating the influence of BIM applications as a mathematical process. The rotational fuzzy models are used to represent the membership functions of the performance values and their corresponding weights. Illustrations of the use of this fuzzy BIM performance tree are presented in the study for the uninitiated users. The results of these processes are an evaluation of BIM project performance as highly positive. The quantification of the performance ratings for the individual factors is a significant contributor to this assessment, capable of parsing vernacular language into numerical data for a more accurate and precise use in performance analysis. It is hoped that fuzzy performance trees and fuzzy set analysis can be used as a tool for the quality and risk analysis for other construction techniques in the future. Baldwin's rotational models are used to represent the membership functions of the fuzzy sets. Three scenarios are presented using fuzzy MEAN, AND and OR gates from the lowest to intermediate levels of the tree, and fuzzy SUM gate to relate the intermediate level to the top component of the tree, i.e., BIM application final performance. The use of fuzzy MEAN for lower levels and fuzzy SUM gates to reach the top level suggests the most realistic and accurate results. The methodology (fuzzy performance tree) described in this paper is appropriate to implement in today's construction industry when limited objective data is presented and it is heavily relied on experts' subjective judgment.

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.

A Simulation Study on the Development of Injection Mold for the Parts of Phone Camera Lens Module (시뮬레이션을 활용한 폰카메라 렌즈모듈 부품용 사출금형개발)

  • Kim, Hye Jeong;Kim, Jae Hoon;Kim, Yeong Gyoo;Song, Jun Yeob;Moon, Dug Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.83-92
    • /
    • 2013
  • The demand of a camera-lens-module which is installed in mobile phone has been increased explosively as the increase of mobile phone market. Recently, two missions are given to the parts manufacturer of lens module, and they are how to keep the quality of injection moulding process as the increase of resolution, and how to decrease manufacturing cost. In this paper, a simulation study is introduced which is used for developing barrel and shield considering the double-cassette type of mould. At first, the simulation for injection process using Mold Flow$^{TM}$ is applied in the phase of mould design, and mechanical simulation using DPM Assembly$^{TM}$ is applied for collision detection between picking robot and mould. As a result, the productivity increased more than 300%.