• Title/Summary/Keyword: Computed tomography perfusion imaging

Search Result 61, Processing Time 0.021 seconds

Contrast Enhanced Ultrasonography and CT Features of Gastrointestinal Stromal Tumor in a Dog

  • Saran Chhoey;Soyeon Kim;Kroesna Kang;Sath Keo;Jihye Choi
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.375-381
    • /
    • 2023
  • A large abdominal mass was incidentally found in a 13-year-old mixed-breed dog and was confirmed to be a cecal gastrointestinal stromal tumor (GIST). Contrast-enhanced ultrasound and post-contrast computed tomography (CT) showed mild contrast enhancement of the mass, indicating low blood flow. The tumor origin was determined to be the cecum by identifying the vessels supplying the mass on post-contrast CT. The exophytic growth of the tumor left the cecal lumen intact without obstruction. This report described the CEUS and CT perfusion of the cecal GIST and perfusion evaluation can help diagnose and characterize GISTs in dogs.

Nuclear Imaging in Epilepsy (간질에서의 핵의학 영상)

  • Chun, Kyung-Ah
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.2
    • /
    • pp.97-101
    • /
    • 2007
  • Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

Lung Perfusion Imaging and $Tc^{99m}-Macroaggregated$ Human Serum Albumin

  • Haider, Kh.H.;Ilyas, M.;Hyder, Q.;Kim, Chong-Kook
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.2
    • /
    • pp.73-80
    • /
    • 2001
  • Lung perfusion scanning, invariably combined with ventilation studies provides a reliable and non-invasive mean to diagnose lung related pathologies despite the availability of modern techniques such as angiography, magnetic resonance imaging, magnetic resonance angiography, and helical (spiral) computed tomography. The technique involves the generation of images by radiations emitted from radioisotopes introduced in to the lungs. Various radiopharmaceuticals have been proposed and designed to incorporate $Tc^{99m}$ in to macroparticulate form for lung perfusion imaging. However, most of these have associated difficulties such as reproducibility of the product with regards to particle size distribution and poor elimination from the lung capillary bed. $Tc^{99m}$ macroaggregated albumin $(Tc^{99m}-MAA)$ is used extensively for clinical lung perfusion imaging and is considered as the radiopharmaceutical of choice. It is non-toxic, safe, and being biodegradable, is easily eliminated from the lung capillary bed by proteolytic enzyme metabolism and by mechanical forces due to lung movement.

  • PDF

Quantitative gated myocardial perfusion SPECT (정량적 게이트 심근관류 SPECT)

  • Ahn, Byeong-Cheol
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.4
    • /
    • pp.207-218
    • /
    • 2003
  • Myocardial perfusion imaging has been increasingly used to provide prognostic data and guidance on the choice of appropriate management of patients with known or suspected coronary artery disease. The electrocardiogram gated myocardial SPECT program is corning into wide use with an advent of $^{99m}Tc-labeled$ tracers and an improvement of SPECT machines. The gated technique permits measurement of important cardiac prognostic indicators without any further discomforts or radiation burden in patients underwent standard myocardial perfusion SPECT. In addition, gated study significantly improves diagnostic yield by reducing the number of borderline interpretations and could find myocardial stunning and viable myocardium. Gated single photon emission computed tomography (SPECT) imaging allows the automated calculation of end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and the assessment of regional wall motion and thickening, and it have dramatically improved assessment of coronary artery disease in routine nuclear practice. This allows the simultaneous assessment of both perfusion and function within the same acquisition, and serves as a cost-effective technique for providing more diagnostic data with fewer diagnostic tests. Because the diagnostic and prognostic power derived from knowledge of left ventricular function can be added to that provided by assessing myocardial perfusion, gated SPECT imaging has rapidly gained widespread acceptance and is now used on a routine clinical basis in a growing number of laboratories, including South Korea. The gated SPECT technique for measurement of left ventricular parameters has been validated against a variety of well established techniques. In this work, overview of gated myocardial perfusion SPECT focus on functional parameters is presented.

CT Assessment of Myocardial Perfusion and Fractional Flow Reserve in Coronary Artery Disease: A Review of Current Clinical Evidence and Recent Developments

  • Chun-Ho Yun;Chung-Lieh Hung;Ming-Shien Wen;Yung-Liang Wan;Aaron So
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1749-1763
    • /
    • 2021
  • Coronary computed tomography angiography (CCTA) is routinely used for anatomical assessment of coronary artery disease (CAD). However, invasive measurement of fractional flow reserve (FFR) is the current gold standard for the diagnosis of hemodynamically significant CAD. CT-derived FFRCT and CT perfusion are two emerging techniques that can provide a functional assessment of CAD for risk stratification and clinical decision making. Several clinical studies have shown that the diagnostic performance of concomitant CCTA and functional CT assessment for detecting hemodynamically significant CAD is at least non-inferior to that of other routinely used imaging modalities. This article aims to review the current clinical evidence and recent developments in functional CT techniques.

Clinical Application of Acute Ischemic Stroke in Perfusion Computed Tomography (초급성 허혈성 뇌졸중에서 관류 전산화단층촬영의 임상적 적용에 대한 연구)

  • Lee, Jong-Seok;Yoo, Beong-Gyu;Kweon, Dae-Cheol
    • Progress in Medical Physics
    • /
    • v.18 no.3
    • /
    • pp.149-160
    • /
    • 2007
  • Recent advent of 64-multidetctor (MD) CT enables more coverage of Z-axis in the perfusion imaging. The purpose of this study was to evaluate the clinical usefulness of perfusion CT by using 64-MD CT in detecting the lesion in patients with acute stroke. The perfusion CT was performed by using 64-MD CT in 62 consecutive patients who were initially suspected to have subacute ischemic stroke symptoms during the period of recent 9 months. These patients had subacute stroke (n=62). CT scanning was conducted with Jog Mode which provided 16 imaging slices with 5 mm of slice thickness, and 8 cm of coverage in Z-axis. Scan interval was 1 seconds for each imaging slice and total 15 scans were repeated. After CT scanning, perfusion maps (CBV, CBF, MTT and TTP) were created at Extended Brilliance Workstation. The CBV and CBF maps showed that lesions were smaller images. While on the MTT and TTP map lesions were seen to be larger fifty-one were large than they appeared on these images. Two slices of perfusion maps obtained at the level of the basal ganglia were chosen to simulate conventional older perfusion CT with 8 cm of coverage in Z-axis. TTP and MTT maps may be clinically useful for evaluation of the penumbral zone in cases of aubacute cerebral ischemic stroke. The perfusion CT is useful in the assessment of acute stroke as an initial imaging modality.

  • PDF

Computed Tomographic Evaluation of Three Canine Patients with Head Trauma (개에서 컴퓨터단층촬영을 이용한 두부 외상의 평가 3례)

  • Kim, Tae-Hun;Kim, Ju-Hyung;Cho, Hang-Myo;Cheon, Haeng-Bok;Kang, Ji-Houn;Na, Ki-Jeong;Mo, In-Pil;Lee, Young-Won;Choi, Ho-Jung;Kim, Gon-Hyung;Chang, Dong-Woo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.4
    • /
    • pp.667-672
    • /
    • 2007
  • This report describes the use of conventional computed tomography(CT) for the diagnosis of head trauma in three canine patients. According to physical and neurologic examinations, survey radiography and computed tomography, these patients were diagnosed as traumatic brain injury. Especially, CT is the imaging modality of first choice for head trauma patients. It provides rapid acquisition of images, superior bone detail, and better visualization of acute hemorrhage than magnetic resonance imaging. It is also less expensive and more readily available. Pre-contrast computed tomography was used to image the head. Then, post-contrast CT was performed using the same technique. The Modified Glasgow Coma Scale(MGCS) score was used to predict their probability of survival rate after head trauma in these dogs. Computed tomogram showed fluid filled tympanic bulla, fracture of the left temporal bone and cerebral parenchymal hemorrhage with post contrast ring enhancement. However, in one case, computed tomographic examination didn't delineate cerebellar parenchymal hemorrhage, which was found at postmortem examination. Treatments for patients placed in intensive care were focused to maintain cerebral perfusion pressure and to normalize intracranial pressure. In these cases, diagnostic computed tomography was a useful procedure. It revealed accurate location of the hemorrhage lesion.

Clinical Feasibility of CT Brain Perfusion in a Dog with Sellar Region Tumor

  • Minji Kim;Gunha Hwang;Jeongmin Ryu;Jiwon Yoon;Moon Yeong Choi;Joong-Hyun Song;Tae Sung Hwang;Hee Chun Lee
    • Journal of Veterinary Clinics
    • /
    • v.41 no.3
    • /
    • pp.178-182
    • /
    • 2024
  • A 10-year-old spayed female Poodle was referred for blindness. On ophthalmic examination, loss of bilateral ocular pupil light reflex, visual loss, and right retinal detachment were confirmed at a local hospital. Magnetic resonance imaging (MRI) of the brain was performed to identify the optic nerve, optic chiasm, and brain disease. A sessile mass centered on the region of the optic chiasm was identified. The mass had iso- to hypointense on fluid-attenuated inversion recovery and T2-weighted images and mildly hypointense on T1-weighted images compared to the gray matter, with strong contrast enhancement. Peripheral edema was also identified. Computed tomography (CT) brain perfusion was performed to obtain additional hemodynamic information about the patient using a multislice CT. CT perfusion showed that the cerebral blood volume in the left temporal lobe region (13.4 ± 1.6 mL/100 g) was decreased relative to the contralateral region (19.9 ± 0.3 mL/100 g). The patient showed decreased appetite and consciousness one week after the CT scan with clinical symptoms worsened. The patient had seizure, tetraparesis, and loss of consciousness. It was euthanized one month later at the request of the owner. This report suggests that CT brain perfusion can provide additional hemodynamic information such as insufficient brain perfusion in sellar region tumor which can help assess potential complications and prognosis and plan treatment.

Associations between Brain Perfusion and Sleep Disturbance in Patients with Alzheimer's Disease

  • Im, Jooyeon J.;Jeong, Hyeonseok S.;Park, Jong-Sik;Na, Seung-Hee;Chung, Yong-An;Yang, YoungSoon;Song, In-Uk
    • Dementia and Neurocognitive Disorders
    • /
    • v.16 no.3
    • /
    • pp.72-77
    • /
    • 2017
  • Background and Purpose Although sleep disturbances are common and considered a major burden for patients with Alzheimer's disease (AD), the fundamental mechanisms underlying the development and maintenance of sleep disturbance in AD patients have yet to be elucidated. The aim of this study was to examine the correlation between regional cerebral blood flow (rCBF) and sleep disturbance in AD patients using technetium-99m hexamethylpropylene amine oxime single-photon emission computed tomography (SPECT). Methods A total of 140 AD patients were included in this cross-sectional study. Seventy patients were assigned to the AD with sleep loss (SL) group and the rest were assigned to the AD without SL group. SL was measured using the sleep subscale of the Neuropsychiatric Inventory. A whole-brain voxel-wise analysis of brain SPECT data was conducted to compare the rCBF between the two groups. Results The two groups did not differ in demographic characteristics, severity of dementia, general cognitive function, and neuropsychiatric symptoms, with the exception of sleep disturbances. The SPECT imaging analysis displayed decreased perfusion in the bilateral inferior frontal gyrus, bilateral temporal pole, and right precentral gyrus in the AD patients with SL group compared with the AD patients without SL group. It also revealed increased perfusion in the right precuneus, right occipital pole, and left middle occipital gyrus in the AD with SL group compared with the AD without SL group. Conclusions The AD patients who experienced sleep disturbance had notably decreased perfusion in the frontal and temporal lobes and increased rCBF in the parietal and occipital regions. The findings of this study suggest that functional alterations in these brain areas may be the underlying neural correlates of sleep disturbance in AD patients.

Correlation of CT Perfusion Images with VEGF Expression in Solitary Brain Metastases

  • Zhang, Jian-Hua;Wang, Ming-Sheng;Pan, Hai-Hong;Li, Shu-Feng;Wang, Zhong-Qiu;Chen, Wang-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1575-1578
    • /
    • 2012
  • Objectives: To obtain permeability surface (PS) values using multi-slice helical CT perfusion imaging and to evaluate the spatial distribution correlation between PS values and vascular endothelial growth factor (VEGF) expression in solitary brain metastases. Methods: Imaging was performed on 21 patients, PS values being calculated from the central, border and peripheral parts of tumours. VEGF expression was determined by immunohistochemical staining. Results: Rim enhancement was found in 16 cases, the border of the tumour featuring PS elevation with high VEGF expression in 13 cases. In the 5 cases with nodular enhancement, the border and the central part had high permeability and VEGF expression was high in all cases, the correlation being significant (P<0.01). Conclusion: VEGF expression in brain metastases positively correlates with PS values from CT perfusion imaging, so that the latter can be used in the surveillance of angiogenic activity in brain metastases.