• Title/Summary/Keyword: Computations

Search Result 1,817, Processing Time 0.032 seconds

NEW AND OLD RESULTS OF COMPUTATIONS OF AUTOMORPHISM GROUP OF DOMAINS IN THE COMPLEX SPACE

  • Byun, Jisoo
    • East Asian mathematical journal
    • /
    • v.31 no.3
    • /
    • pp.363-370
    • /
    • 2015
  • The automorphism group of domains is main stream of classification problem coming from E. Cartan's work. In this paper, I introduce classical technique of computations of automorphism group of domains and recent development of automorphism group. Moreover, I suggest new research problems in computations of automorphism group.

Numerical discrepancy between serial and MPI parallel computations

  • Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.5
    • /
    • pp.434-441
    • /
    • 2016
  • Numerical simulations of 1D Burgers equation and 2D sloshing problem were carried out to study numerical discrepancy between serial and parallel computations. The numerical domain was decomposed into 2 and 4 subdomains for parallel computations with message passing interface. The numerical solution of Burgers equation disclosed that fully explicit boundary conditions used on subdomains of parallel computation was responsible for the numerical discrepancy of transient solution between serial and parallel computations. Two dimensional sloshing problems in a rectangular domain were solved using OpenFOAM. After a lapse of initial transient time sloshing patterns of water were significantly different in serial and parallel computations although the same numerical conditions were given. Based on the histograms of pressure measured at two points near the wall the statistical characteristics of numerical solution was not affected by the number of subdomains as much as the transient solution was dependent on the number of subdomains.

NAVIER STOKES COMPUTATIONS ON A TWIN ENGINE NOZZLE-AFTERBODY

  • Gogoi, A.;Sundaramoorthi, S.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.761-770
    • /
    • 2008
  • The report presents turbulent Navier Stokes computations on twin engine afterbody model with jet exhaust. The computations are carried out for free-stream Mach number of 0.8 to 1.20 and jet pressure ratio of 3.4 to 7.8. The Spalart-Allmaras turbulence model is used in the computations. Comparison is made with experimental data and Cp distribution around the afterbody is found to agree well with experiments. Flow features of the exhaust jet like under expansion, over expansion, Mach discs, etc are well captured. The effect of nozzle pressure ratio and flight Mach number are studied in detail. These computations serve as validation of the in-house code for twin jet afterbody.

  • PDF

Numerical study on the characteristics of the flow through injector orifice by multi-block computations (다중블럭계산에 의한 분사기 오리피스 유동특성 해석)

  • Kim, Yeong-Mok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.414-426
    • /
    • 1997
  • Numerical computations were conducted to characterize the three-dimensional laminar flow through an injector orifice having an inclined angle of 30 .deg.. For this study, the incompressible Navier-Stokes equations in generalized curvilinear coordinates, using a pseudocompressibility approach for continuity equation, were solved. The computations were performed using the finite difference implicit, approximately factored scheme of Beam and Warming and multi-block grids of complete continuity at block interfaces. The multi-block computations were validated for the steady state using direct comparison of multi-block solutions with equivalent single-block ones, including 2-D 180.deg. TAD and 3-D 90.deg. pipe bend. The comparisons between the numerical solutions and the flow field measurements for a tube with sudden contraction were presented in this work for solution validation. Computational results showed the nature of complex flow fields within the inclined injector orifice, including strong pressure-driven secondary flows in the cross stream induced by the effect of streamline curvature. In addition, asymmetric secondary flows were induced in the Reynolds number range above assumed laminar flow regime considered. However, turbulence calculations and grid dependency studies are needed for more accurate computations.

Structure and Suppression of Nonpremixed Counterflow Flames (비예혼합 대향류화염의 구조와 소화)

  • Anthony Hamins;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.17 no.3
    • /
    • pp.20-25
    • /
    • 2003
  • Measurements with filaments and thermocouples and computations with Oppdif and FDS were carried out to investigate the impact of flame strain, agent addition, and buoyancy on the structure and extinction of nonpremixed counterflow flames. Measurements through 2.2 s drop tests in microgravity conditions and experiments in normal gravity conditions were compared with the results of computations. For the global strain rates 7 s$^{-1}$ through 100 s$^{-1}$ , the turning point behavior in the critical nitrogen concentration at O-g was confirmed. The effects of buoyancy, that is, changes in the flame curvature and thickness were also confirmed by the computations with FDS. There was agreement in the peak flame temperature and its position between the computations and the measurements in the near extinction methane/air diffusion flames in microgravity.

Numerical Analysis on Flow Fields and the Calculation of Wave Making Resistance about Air Supported Ships (수치시뮬레이션에 의한 공기부양선 주위의 유동장해석과 조파저항계산)

  • Na Y. I.;Lee Y.-G.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1996
  • Numerical computations are carried out to analyze the characteristics of flow fields around Air Supported Ships. The computations are performed in a rectangular grid system based on MAC(Marker And Cell) method. The governing equations are represented in finite difference forms by forward differencing in time and centered differencing in space except for its convection terms. For the certification of this numerical analysis method, the computations of flow fields around a Catamaran, an ACV(Air Cushion Vehicle) modeled with pressure distribution on free surface and two SES(Surface Effect Ship)'s are carried out, The results of the present computations are compared with the previously presented computational and experimental results in the same condition.

  • PDF

Iterative mesh partitioning strategy for improving the efficiency of parallel substructure finite element computations

  • Hsieh, Shang-Hsien;Yang, Yuan-Sen;Tsai, Po-Liang
    • Structural Engineering and Mechanics
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2002
  • This work presents an iterative mesh partitioning approach to improve the efficiency of parallel substructure finite element computations. The proposed approach employs an iterative strategy with a set of empirical rules derived from the results of numerical experiments on a number of different finite element meshes. The proposed approach also utilizes state-of-the-art partitioning techniques in its iterative partitioning kernel, a cost function to estimate the computational cost of each submesh, and a mechanism that adjusts element weights to redistribute elements among submeshes during iterative partitioning to partition a mesh into submeshes (or substructures) with balanced computational workloads. In addition, actual parallel finite element structural analyses on several test examples are presented to demonstrate the effectiveness of the approach proposed herein. The results show that the proposed approach can effectively improve the efficiency of parallel substructure finite element computations.