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NEW AND OLD RESULTS OF COMPUTATIONS OF

AUTOMORPHISM GROUP OF DOMAINS IN THE COMPLEX

SPACE

Jisoo Byun

Abstract. The automorphism group of domains is main stream of classi-

fication problem coming from E. Cartan’s work. In this paper, I introduce
classical technique of computations of automorphism group of domains

and recent development of automorphism group. Moreover, I suggest new

research problems in computations of automorphism group.

1. Introduction

The classification program for domains in the complex Euclidean space Cn
with a noncompact holomorphic automorphism group has its origin in H. Poincaré’s
observation that the unit ball B = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} and the
bidisc ∆2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1} are biholomorphically inequiva-
lent.

Theorem 1.1. There are no bijective holomorphic maps ϕ between the unit
ball B = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} and the bidisc ∆2 = {(z1, z2) ∈ C2 :
|z1| < 1, |z2| < 1}.

The key part of proof is based on the automorphism groups of the unit ball
and the bidisc. The automorphism group is the set of all bijective holomorphic
maps from a domain into itself. At that time, E. Cartan completely proved
that there are only six types of bounded symmetric domains. The domain D is
called bounded symmetric domain if for every point p ∈ D, there is bijective
holomorphic map ϕ (call as an automorphism) from D onto itself, such that p
is an isolated fixed point of ϕ and ϕ ◦ ϕ is equal to the identity map Id. This
automorphism ϕ of domain D has the same role as the rigid motion in the
euclidean space. Hence the automorphis group Aut(D) of a domain D consists
of all automorphisms of D. This automorphism group Aut(D) is a topological
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group under compact-open topology. Moreover, this is a real Lie group with
Lie algebra aut(D) if D is bounded.

Since then, the classification problem focus on domains with noncompact au-
tomorphism groups. If D is a bounded symmetric domain, then D has noncom-
pact autormphism group. The reverse is not true. Therefore, the classification
program of domain with noncompact automorphism group is bigger problem.
This program is paused because there are no tools for classifying domains.

B. Wong[12] and J.P. Rosay[10] proved that all strongly pseudoconvex do-
main with noncompact automorphism group is biholomorphically equivalent to
the unit ball in Cn. The key idea of proof is based on the ratio of Kobayashi vol-
ume and Eisenman volume. This technique cannot be extended to the general
domains.

Theorem 1.2. Let D be a bounded strongly pseudoconvex domain in Cn. If
Aut(D) is noncompact, then D is biholomorphically equivalent to the unit ball
B.

In 1991, E. Bedford and S. Pinchuk introduce the scaling method or streching
coordinates in [1] and proved the classification result of finite type domains in
C2.

Theorem 1.3. Let D be a bounded pseudoconvex domain of finite type in C2

with real analytic boundary. If Aut(D) is noncompact, then D is biholomorphi-
cally equivalent to the Thullen domain Em = {(z1, z2) ∈ C2 : |z1|2+|z2|2m < 1}.

The scaling technique is powerful tools for classification problem of domain
with noncompact automorphism group. In [7], K.T. Kim proved that every
domain in C2 with a piecewise Levi flat boundary which possess a noncompact
automorphism group is equivalent to the unit bidisc.

Theorem 1.4. Let D be a convex bounded pseudoconvex domain of piecewise
Levi flat boundary in C2. If Aut(D) is noncompact, then D is biholomorphically
equivalent to the bidisc ∆2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}.

After that, there are lots of results for classification program using scaling
technique. The detailed information is refered in [5].

There are three standard model domains, the unit ball, the bidisc, and
Thullen domain in the above well-known theorem. Obiviously, the automor-
phism group of three domains have noncompact automorphism group and the
automorphisms of them are well known as explicit form.

In this paper, we do compute the explicit automorphisms of three standard
and old domains. Also, there are well-known examples, for example, the Worm
Domain, the Kohn-Nirenberg domain, the Fornæss domain, etc. We also intro-
duce new results of these domains and conjectures in computations of automor-
phism group.

We already know the automorphism group of given is used in Poincaré’s
Theorem. The author believes that the computation of automorphism group
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of domain is basic step in classification problem if a domain is given. Recently,
the computation of automorphism group affects on the rigidity problem - any
proper holomorphic map are automorphism of domain.

The organization of paper is as follows : In Section 2, the useful techniques
for computation is introduced. In Section 3, we compute the explicit automor-
phisms of the unit ball, the bidisc and the Thullen domain. In Section 4, we
introduce the recent results of automorphism group and the standard steps for
computation of automorphisms.

2. Preliminary

Let D be a bounded domain in Cn. Then Aut(D) has a group structure
under the function composition. We can consider G := Aut(D) be a group
acting on D by

Ψ :G×D → D

Ψ(f, z) = f(z).

We can consider the stabilizer Gp of a point p ∈ D by Gp = {f ∈ G | f(p) = p}.
This stabilizer Gp is called by the isotropy group at a point p. The orbit
Gp = {f(p) | f ∈ G} of a point p ∈ D is called by automorphism orbit of p.
The quotient group G/Gp is naturally identified with the orbit Gp.

The compact-open topology is defined on the automorphism group G :=
Aut(D). The sequence {fj} ⊂ G converges f0 ∈ G with respect to the compact-
open topology means that fj uniformly converges to f0 on the every compact
subset K ⊂ D.

Now we introduce Cartan’s Uniqueness Theorem.

Theorem 2.1 (Cartan’s Uniquess Theorem). Let D be a bounded domain in
Cn and a point p ∈ D. If f is holomorphic map from D to D satisfying the
differential df(p) at p is the identity matrix, then f is the identity map.

Proof. First of all, we prove Theorm in one variable case. Expecting contradic-
tion, f is not identity map. Without loss of generality, we assume that p is the
origin. Since df(o) is the identity, df(o) = f ′(o) = 1. So we can apply Taylor
expansion at the origin to f . Then

f(z) = z + akz
k + higher order terms+,

where ak is the first nonzero Taylor coefficient. We consider n-times function
composition of f , fn := f ◦ · · · ◦ f can be expressed by

fn(z) = z + nakz
k + higher order terms + .

By Cauchy Integral formulae, for any holomorphic map ϕ from D to D,

ϕ(k)(o) =
k!

2πi

∫
|ζ|=ε

ϕ(ζ)

ζk+1
dζ,
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where ϕ(k)(o) is the k-th derivative at the origin. Letting ϕ = fn and dividing
by k!,

|nak| =

∣∣∣∣∣fn(k)(z)k!

∣∣∣∣∣ ≤ 1

2π

∫
|ζ|=ε

∣∣∣∣∣fn(k)(ζ)

ζk+1

∣∣∣∣∣ |dζ|.
Since D is bounded, the right handed side is bounded independent of n. But
left hand side is diverging. This is contradiction. �

The above proof is working for any dimension.
We call a domain D circular if for every point z ∈ D and θ ∈ R, eiθz is

contained in D. Applying Theorem 2.1, we obtain the Cartan’s Linearization
Theorem.

Theorem 2.2 (Cartan’s Linearization Theorem). Let D1, D2 be bounded cir-
cular domains in Cn and the origin o ∈ Dj (j = 1, 2). If f is a bijective
holomorphic map from D1 to D2 with f(o) = o, then f is a linear map.

Proof. For a real number θ, an automorphism Πθ is defined by Πθ(z) = eiθz of
Dj(j = 1, 2). We consider a map g defined by

g(z) = f−1 ◦Π−1θ ◦ f ◦Πθ(z).

Then g is contained in the Aut(D1) and g preserves the origin. Moreover

dg(o) = df−1(o)dΠ−1θ (o)df(o)dΠθ(o).

Since dΠθ(o) is a diagonal matrix, we obtain that dg(o) is the identity matrix.
By Cartan Uniqueness Theorem, g is identically to the identity map. Hence we
get commutative relation f ◦Πθ = Πθ ◦f . By Taylor series expansion, we easily
get that f is linear. �

By the above theorem, the isotropy group Aut(B)o of the unit ball B at the
origin o is consists of all unitary maps U(n) and the isotropy group Aut(∆2)o
of the bidisc ∆2 at the origin o is consists of rotations (z1, z2) 7→ (eiθz1, e

iηz2)
and transition (z1, z2) = (z2, z1). The full automorphism group is the unit disc
in one dimensional complex space, is well-known by Schwarz’s Lemma.

Aut(∆) =

{
eiθ

z + a

1 + āz

∣∣ θ ∈ R, |a| < 1

}
Using these facts, we can prove H. Poincaré’s Theorem.

Proof. Let f be a bijective holomorphic map from B onto ∆2. We can assume
that f(o) = (a1, a2). Define an automorphism by

ϕ(z1, z2) =

(
z1 − a1
1− ā1z1

,
z2 − a2
1− ā2z2

)
.

Then ϕ ◦ f is biholomorphism from B onto ∆2 satisfying ϕ ◦ f(o) = o. We
can obtain that the group isomorphism Ψ : Aut(B)o → Aut(∆2)o is defined
by Ψ(g) = (ϕ ◦ f) ◦ g ◦ (ϕ ◦ f)−1 for all g ∈ Aut(B)o. Note that Aut(B)o is
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non-abelian group but Aut(∆2)o is abelian. Hence, this is contradiction. The
proof is done. �

3. Old Results of Automorphism Groups

In Section 2, we use the isotropy subgroup of given domain. Now, we find
all automorphisms of the unit ball, the bidisc and the Thullen domain.

We now define an automorphism group of the unit ball. Given a ∈ C satis-
fying |a| < 1,

ϕ1
a(z1, z2) =

(
z1 − a
1− āz1

,

√
1− |a|2

1− āz1
z2

)
is the one-to-one onto holomorphic map of the unit ball. Obviously,

ϕ2
a(z1, z2) =

(√
1− |a|2

1− āz2
z1,

z2 − a
1− āz2

)
is also an autormophism. Using these maps, for any point (α, β) ∈ B, there are
two automorphisms ϕ1

a, ϕ
2
b such that ϕ1

a ◦ ϕ2
b(α, β) = (0, 0). This means that

the unit ball is homogeneous domain. Equivalently, the automorphism group
Aut(B) transitively acts on the unit ball.

Theorem 3.1. Let B = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1} be the unit ball in C2.
Then if f is an automorphism of B, then f is a finite composition of unitary
map U(z) and automorphisms ϕ1

a, ϕ
2
b of the unit ball.

Proof. Let f be an automorphism of the unit ball and let f(0, 0) = (α, β) ∈ B.
We consider new automorphism g = ϕ1

α ◦ ϕ2
β ◦ f . Then g preserves the origin.

By Cartan’s Linearization Theorem, g is linear. So, g preserve the boundary of
the unit ball. It means that g is identically to the unitary map U . Therefore
f = ϕ1

−α ◦ ϕ2
−β ◦ U . �

Note that Aut(B2) acts transitively on B2. Equivalently, for any points p, q
in the unit ball B, there is an automorphism f ∈ Aut(B2) such that f(p) = q.

We will compute automorphism of the unit bids in C2. There are well-known
two types of automorphisms of the bidisc.

L(z1, z2) = (z2, z1)

ϕa,b(z1, z2) =

(
eiθ1

z1 − a
1− āz1

, eiθ2
z2 − b
1− b̄z2

)
,

where |a|, |b| < 1 and θ1, θ2 ∈ R. The first map L is linear and the second map
is the Möbius transformation.

Theorem 3.2. Let ∆2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1} be the bidisc in C2.
Then if f is an automorphism of ∆2, then f is a finite composition of transition
map L and the Möbius transformation ϕa,b.
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Proof. Let f be an automorphism ∆2 and let (a, b) = f(0, 0). We consider
ϕa,b ◦ f satisfying

ϕ ◦ f(0, 0) = ϕa,b(a, b) = (0, 0).

By Cartan’s Linearization Theorem, we can easily get ϕ ◦ f = L or ϕ ◦ f is an
identity map. Thus the proof is done. �

Let m be an integer with m > 1. The domain Em = {(z1, z2) ∈ C2 :
|z1|2 + |z2|2m < 1} is called the Thullen domain in C2. The automorphism of
the Thullen domain can be described by the following form

(z1, z2) 7→

(
eiθ1

z1 − a
1− āz1

, eiθ2
2m
√

1− |a|2
m
√

1− āz1
z2

)
where |a| < 1.

4. Recent Results of Automorphism Groups

The Kohn-Nirenberg domain ΩKN defined by

ΩKN =

{
(z1, z2) ∈ C2 : Re z2 + |z1z2|2 + |z1|8 +

15

7
|z1|2Re z61 < 0

}
was constructed by Kohn and Nirenberg [9]. The Kohn-Nirenberg domain is a
well-known example of a pseudoconvex domain not admitting a local holomor-
phic support function. In fact, the Kohn-Nirenberg domain cannot be realized
as a convex set by any local holomorphic coordinate change at the origin. In
[2], authors compute all automorphism of the Kohn-Nirenberg domain.

Theorem 4.1 (Byun and Cho). The automorphism group of the Kohn-Nirenberg
domain ΩKN is generated by the map (z1, z2) 7→ (ei

π
3 z1, z2). Therefore, it is

compact and a cyclic group of order 6.

In [4], J.E. Fornæss considered the germ of a domain near the origin in C2

such that Ωt = {(z1, z2) | Re z2 + |z1z2|2 + |z1|6 + t|z1|2Re (z1)4} to study the
holomorphic peak function that is smooth up to the boundary. J.E. Fornæss
proved that for 1 < t < 9/5 the domain Ωt does not admit a holomorphic
function on Ωt that is C1 up to the boundary and that peaks at the origin.

In [3], they compute all automorphism of the Fornæss domain. Moreover,
they generalize domain Ωn,t defined by

Re z2 + |z1z2|2 + |z1|2n+2 + t|z1|2Re z2n1 < 0

for positive integer n. These domains include the Kohn-Nirenberg domain and
the Fornæss domain.

Theorem 4.2 (Byun and Cho). The automorphism group of Ωn,t is equal to
the set

{Πn
k | k = 1, 2, · · · , 2n},

where Πn(z1, z2) = (ei
π
n z1, z2) and Πn

k is the k-times function composition of
Πn. Therefore, it is compact and a cyclic group of order 2n.
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In [6], they introduce the general Kohn-Nirenberg domain in C2 definded by

Ωk = {(z1, z2) ∈ C2 | Re z2+|z1z2|2+|z1|2n+k1|z1|2n2mRe (z2m1 )+k2|z1|2n2mIm (z2m1 ) < 0}

, where ki ∈ R, n,m ∈ Z+, and nm1 ≥ 0. The main result of [6] is :

Theorem 4.3. Let Ωk be the above set. If |k1|+ |k2| < n2

n2−m2 and k21 + k22 > 1

then the automorphism group of Ωk is equal to the set {Πk
` : ` = 1, 2, · · · , 2m},

where Πk(z1, z2) = (ei
π
m z1, z2) and Πk

` is the `-times function composition of
Πk. Therefore, it is compact and a cyclic group of order 2m.

The above three theorems is based on the following steps :

STEP I These domain Ω are unbounded domains of D’Angelo finite type. The
origin is a boundary point of domain and an isolated point with respect
to the D’Angelo type. Every automorphism f of domains should either
preserves the origin or diverges to the infinite point.

STEP II Case f(0) = 0
Since domains are satisfied the Bell’s Condition (R), every automor-
phism can be extended near the origin. Let H be the holomorphic
tangent space at the origin to the boundary of domain. Using defining
equation and power series, authors show that automorphism f preserves
H. The set Ω∩H is considered as the set in C. The boundary of Ω∩H
consists of several straight lines intersecting only at the origin. Since
f is an automorphism of Ω ∩ H and f(0) = 0, the derivative of f at
the origin is equal to 1 after linear map composition. This setting is
similar to Cartan’s Uniqueness Theorem except that the origin stays in
the boundary. By reflection principle, f is an identity map of Ω ∩ H.
Choose a point p in Ω ∩ H. The point p is an interior point of the
domain. Again, we will use Cartan’s Uniqueness Theorem. Denoted a
derivative of f at p by A. Since sequence f ◦ · · · ◦ f is a normal family,
A is an identity matrix. Hence f is an identity map of domain.

STEP III f diverges to the infinite point. It means that there is a sequence pj in
domain satisfying

lim
j→∞

pj = 0, lim
j→∞

|f(pj)| =∞.

After an inversion map I(z1, z2) = ( 1
z1
, z2) acting domain, the sequence

I ◦ f(pj) converges to the origin. The local germ of domain I(Ω) at the
origin is strongly pseudoconvex boundary point. We apply scaling tech-
nique to sequences pj and I◦f(pj). The original domain converges finite
type model domain MP = {(z1, z2) | Re z2 + P (z2) < 0} and the second
scaled limit domain

{
(z1, z2) | Re z2 + |z2|2 < 0

}
. This is impossible.
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In [11], author constructs the bounded Kohn Nirenberg domain D in C2

defined by

Re z2 +
1

5
|z2|2 + |z1z2|2 + |z1|8 +

15

7
|z1|2Re (z2)6 + 10|z1|10 < 0.

The automorphism group Aut(D) is a compact group by the well-known results.
But we do not full automorphisms of domain D.

Problem 4.4. Find all automorphisms of the bounded Kohn Nirenberg domain.
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