• Title/Summary/Keyword: Computational visualization

Search Result 333, Processing Time 0.023 seconds

Visualization of Air Absorption Induced by Free Surface Vortex in the Pump Sump Using Multi-phase Flow Simulation (펌프 섬프장내 자유표면 보텍스에 의한 공기흡입 현상의 가시화)

  • Park, Young-Kyu;Li, Kui. Ming.;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.3
    • /
    • pp.59-64
    • /
    • 2011
  • In this study the change of free surface vortex is expressed through the time volume fraction using multiphase unsteady condition in sump, because in previous studies of the pump sump did not represent the behavior of the free surface vortex exactly due to the reason it was calculated using single phase and steady condition. The reliability of the computational analysis is verified through comparing experimental results with that of present numerical analysis. Homogeneous free surface model is used to apply interactions of air and water. The results show that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5%. The vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. The behavior of free surface vortex at numerical analysis is quite similar to experimental test. The result of vortex motion according to time, works on a cycle.

A study on supersonic jet using Schlieren technique and numerical simulation in low-pressure condition (Schlieren 기법과 수치해석을 이용한 저압 상황의 초음속 제트 유동 연구)

  • Ji, Yun Young;Jang, Dong Kyu;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.51-58
    • /
    • 2020
  • Research on shock structures of supersonic jet through visualization experiments in low-pressure environment have not been actively conducted. Therefore, in this study, shock waves and supersonic jets were analyzed and compared by numerical analysis and Schlieren technique at low-pressure. Schlieren technique is commonly used to visualize the shock waves generated by density gradient as interferometric methods. Pressure ratio of entrance and ambient was set around 4 to observe moderate under-expanded jet. For validation of experimental and numerical results, the shock structure and frequency were compared. In the case of ST and C nozzle, the results were shown that the difference of shock cell distance was within 10%. The Mach number gradually decreased due to energy reduction, and the error rate was within 7%. D nozzle was not fitted to be observing the shock structure. Because the interface between rarefaction fan and supersonic jet was ambiguous and oscillating phemenoma occurred at end of jet, the supersonic jet in low ambient pressure was observed and analyzed.

Behavior Patterns and Visualization by Playing Experience in FPS Game (FPS게임의 플레이경험에 따른 행동패턴과 시각화)

  • Choi, GyuHyeok;Kim, Mijin
    • Journal of Korea Game Society
    • /
    • v.16 no.4
    • /
    • pp.35-44
    • /
    • 2016
  • To apply the player's experiences to the design process of the game levels set by the developer, gameplay behavior analysis is needed. The player's behavior which is different by how much he got experiences from the play has generally been studied by one computational approach based on numerical data and the other HCI(human-computer interaction) approach through heuristic analysis. For the analysis of the player's behavior with the level design patterns in FPS(first-person shooter) games, in this paper those methods are used to code 12 main types of action, which in turn is simply categorized into 5 kinds of behavior pattern. Along with it, an optimized visualization is proposed to intuitively compare the flow of behavior pattern with the time of playing game.

A Multi-Application Controller for SAGE-enabled Tiled Display Wall in Wide-area Distributed Computing Environments

  • Fujiwara, Yuki;Date, Susumu;Ichikawa, Kohei;Takemura, Haruo
    • Journal of Information Processing Systems
    • /
    • v.7 no.4
    • /
    • pp.581-594
    • /
    • 2011
  • Due to the recent advancement of networking and high-performance computing technologies, scientists can easily access large-scale data captured by scientific measurement devices through a network, and use huge computational power harnessed on the Internet for their analyses of scientific data. However, visualization technology, which plays a role of great importance for scientists to intuitively understand the analysis results of such scientific data, is not fully utilized so that it can seamlessly benefit from recent high-performance and networking technologies. One of such visualization technologies is SAGE (Scalable Adaptive Graphics Environment), which allows people to build an arbitrarily sized tiled display wall and is expected to be applied to scientific research. In this paper, we present a multi-application controller for SAGE, which we have developed, in the hope that it will help scientists efficiently perform scientific research requiring high-performance computing and visualization. The evaluation in this paper indicates that the efficiency of completing a comparison task among multiple data is increased by our system.

Visualization Tool Design for Searching Process of Particle Swarm Optimization (Particle Swarm Optimization 탐색과정의 가시화를 위한 툴 설계)

  • 유명련
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.332-339
    • /
    • 2003
  • To solve the large scale optimization problem approximately, various approaches have been introduced. Recently the Particle Swarm Optimization has been introduced. The Particle Swarm Optimization simulates the process of birds flocking or fish schooling for food, as with the information of each agent is skated by other agents. The Particle Swarm Optimization technique has been applied to various optimization problems whose variables are continuous. However, there are seldom trials for visualization of searching process. This paper proposes a new visualization tool for searching process of Particle Swarm Optimization algorithm. The proposed tool is effective for understanding the searching process of Particle Swarm Optimization method and educational for students. The computational results can be shown tiny and very helpful for education.

  • PDF

Control of Subsurface Vortex on Cylindrical Sump Wall (원통형 펌프 흡입정 벽면에서 발생하는 수중 보텍스 제어)

  • Park, Young Kyu;Jeon, Joon Ho;Lee, Yoen Won
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • The subsurface vortex - which occurs inside the cylindrical sump - was visualized through Computational Fluid Dynamics (CFD) and experiment. The analysis of subsurface vortex inside the cylindrical sump was already carried out using CFD techniques by the first author. To understand the subsurface vortex more clearly, an experimental analysis was carried out with a 1/5th scale model; and the flow rate was calculated according to the similarity law. The experimental results of vortex visualization matches well with the CFD results. The surface roughness model and Anti Vortex Device (AVD) model have been investigated to control the subsurface vortex. For the case of average surface roughness of 1mm and 5mm, the subsurface vortex appears and the vorticity is higher when compared to that of a smooth surface condition. However, for the AVD model, the subsurface vortex is completely removed and the internal flow is stabilized.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

Hydrodynamic Analysis of Rectangular Sieve Tray under Weeping Conditions (위핑 유동 조건에서의 직사각형 체 주위 유동의 수력학적 분석)

  • Uwitonze, Hosanna;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.3
    • /
    • pp.34-40
    • /
    • 2017
  • Within fractionating devices existing in separation and purification industries, sieve trays are widely used as tower internals and their choice is due to economical attractiveness. While operating a trayed distillation tower weeping phenomenon has a critical effect on the efficiency, in this case study a weeping phenomenon was undertaken by means of numerical model in a rectangular sieve tray. Eulerian-Eulerian Computational Fluid Dynamics (CFD) method was used and the obtained CFD results are in a good agreement with the experimental data in terms of weeping rate and pressure drop.

The Flow Analysis of Virtual Channel depending upon the change of two ingates

  • Kim, Nam-Hyeong;Kim, Gyeong-Bo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1636-1640
    • /
    • 2006
  • SMAC method, one of the computational fluid dynamics techniques, is modified from the original MAC method for the time-dependent variation of flow analysis. The Navier-Stokes equations for incompressible time-dependent viscous flow are applied, and also marker particles that present the visualization of flow analysis are used. In this study SMAC technique is used to analyze the flow behavior in the water-filling of virtual channel. Then by changes of diameter of two ingates, the change of velocity and discharge when two ingates are filled the water to virtual channel are simulated. As a result, water-filling flow pattern in the virtual channel is simulated very well. Therefore, this numerical simulation will also be applied for the design of structures as open flume and porous breakwater.

  • PDF

Study of geometric effects on vortex breakdown in a rotating axisymmetric circular cylinder (회전하는 축 대칭 원통형 용기에서의 기하학적 영향에 따른 와동붕괴에 관한 연구)

  • Kim Jae Won;Kim Nam Wook;Byun Sam Mon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.35-41
    • /
    • 2004
  • A numerical investigation has been made for flows in an axisymmetric circular cylinder with a rotating cone located at the bottom of the container. The axisymmetric container is completely filled with a viscous fluid. Major parameter for the present research is the vertex angle of the cone, otherwise Reynolds number of fluid and aspect ratio of the vessel is fixed. Main interest is in vortex breakdown of meridional circulation by rotation of the cone with respect to the longitudinal axis of the cylinder. The method to this problem is numerically to integrate momentum and continuity equations on a generalized body fitted grid system. The pattern of vortex breakdown is quite different from that in a right circular cylinder with flat end wall disks. Flow visualization photographs of a preceeding work are compared with the present numerical results.

  • PDF