• 제목/요약/키워드: Computational flow analysis

검색결과 2,289건 처리시간 0.025초

제트홴에 의해 형성되는 터널내 유동의 실험 및 수치적 해석 (Numerical and Experimental Analysis of Tunnel Flow Induced by Jet Fan)

  • 김정엽;양상호
    • 한국유체기계학회 논문집
    • /
    • 제13권3호
    • /
    • pp.59-64
    • /
    • 2010
  • To analyze the three-dimensional flow in tunnel caused by operation of jet fan, both experimental and computational studies have been conducted. The experimental analysis of tunnel flow induced by jet fan is conducted on a real-scale apparatus with jet fan and tunnel, and air velocity at the monitoring points is measured for variation of fan's RPM. The three-dimensional numerical analysis including tunnel and jet fan is carried out for the same geometric configuration as the experimental analysis. The experimental and computational results are compared to examine the applicability of the numerical method.

2차원 및 축대칭 운동체 주위의 초공동 현상에 대한 수치해석 (NUMERICAL ANALYSIS OF SUPER-CAVITATING FLOW AROUND TWO-DIMENSIONAL AND AXISYMMETRIC BODIES)

  • 박선호;이신형
    • 한국전산유체공학회지
    • /
    • 제16권1호
    • /
    • pp.14-21
    • /
    • 2011
  • Super-cavitating flows around under-water bodies are being studied for drag reduction and dramatic speed increase. In this paper, high speed super-cavitating flow around a two-dimensional symmetric wedge-shaped body were studied using an unsteady Reynolds-averaged Navier-Stokes equations solver based on a cell-centered finite volume method. To verify the computational method, flow over a hemispherical head-form body was simulated and validated against existing experimental data. Various computational conditions, such as different wedge angles and caviation numbers, were considered for the super-cavitating flow around the wedge-shaped body. Super-cavity begins to form in the low pressure region and propagates along the wedge body. The computed cavity lengths and velocities on the cavity boundary with varying cavitation number were validated by comparing with analytic solution.

Flow Field Analysis for Ultrasonic Flow Meter

  • OSHIMA Yuko;TAKAMIYA Toshiyuki;ITO Shigeyuki
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.209-209
    • /
    • 2003
  • PDF

축류팬의 비정상 유동장 및 유동소음의 수치 해석 (NUMERICAL ANALYSIS OF UNSTEADY FLOW FIELD AND AEROACOUSTIC NOISE OF AN AXIAL FLOW FAN)

  • 김욱;허남건;전완호
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.60-66
    • /
    • 2010
  • Unsteady Reynolds Averaged Navier-Stokes(URANS) and Large Eddy Simulation(LES) simulation of an axial flow fan are calculated upon same conditions and computational grids in order to study aeroacoustic noise of an axial flow fan numerically. Results of computed performance and predicted noise are compared with those of measurement. Both performances show accurate results with a significant difference of less than 5%. However, noise of LES result is more close to measured noise qualitatively than URANS. Levels of tonal noises of both LES and URANS are quite similar with those of measured at BPF(Blade Passing Frequency) in sound spectrum. However, as leading edge separation and tip vortex shedding phenomena of LES are showed more clearly than those of URANS, sound level of broadband noise of LES corresponds better than that of URANS, especially.

Nonlinear Characteristics of Low-speed Flow Induced Vibration for the Safety Design of Micro Air Vehicle

  • 장태진;김동현;이인
    • 한국소음진동공학회논문집
    • /
    • 제12권11호
    • /
    • pp.873-881
    • /
    • 2002
  • The fluid induced vibration (FIV) phenomena of an equivalent airfoil system of MAV have been investigated in low Reynolds number flow region. Unsteady flows with viscosity are computed using two-dimensional incompressible Navier-Stokes equations. The present fluid/structure interaction analysis is based on one of the most accurate computational approach with computational fluid dynamics (CFD) and computational structural dynamics (CSD) techniques. The highly nonlinear fluid/structure interaction phenomena due to severe flow separations have been analyzed for the low Reynolds region that has a dominancy of flow viscosity. The effects of Reynolds number and initial angle of attack on the fluid/structure coupled vibration instability are shown and the qualitative trend of FIV phenomenon is investigated.

전산 시뮬레이션 기반의 위상최적설계에 의한 경량 밸브디스크의 구조적 안전성 (Structural Safety of Lightweight Valve Disc by Topology Optimization Design based on Computational Simulation)

  • 김태형
    • 에너지공학
    • /
    • 제29권3호
    • /
    • pp.25-33
    • /
    • 2020
  • 본 연구에서는 유동해석 및 구조해석을 수행하여 위상최적화에 의해 설계된 버터플라이 밸브 디스크의 구조적 안전성을 살펴보았다. 유동해석을 수행하여 유량계수의 변화와 공동현상을 예측하였으며, 구조해석 후 강도 및 강성의 유효성을 확인하였다. 유동해석 후 열림각이 커질수록 유량계수가 비선형적으로 증가하다가 완만한 경사를 보였고, 열림각이 12o 일 때 공동화 현상을 예측할 수 있었다. 구조해석 후 경량 디스크의 유효응력이 재료의 항복강도보다 작았으며, 최대변형량도 선행연구의 보수적 변형량보다 작았다. 궁극적으로 전산해석에 기초한 경량 밸브 디스크의 구조적 안전성이 유효함을 확인하였다.

일체형원자로 SMART 냉각재 순환펌프의 전산성능예측 (Computational Performance Prediction of Main Coolant Pump for the Integral Reactor SMART)

  • 김민환;이재선;박진석;김종인;김긍구
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.32-40
    • /
    • 2003
  • CFD analyses of the three-dimensional turbulent flow in the impeller and diffuser of an axial flow pump including suction and discharge parts are presented and compared with experimental data. The purpose of the current study is to validate the CFD method for the performance analysis of the main coolant pump for SMART and to investigate the effect of suction and discharge shapes on the pump performance. To generate a performance curve, not only the design point but also the off-design points were computed. The results were compared with available experimental data in terms of head generated. At the design point, the analysis accurately predicts the experimental head value. In the range of the higher flow rates, the results are also in very good agreement with the experimental data, in magnitude but also in terms of slope of variation. For lower flow rates, the results shows that the analysis considering the suction and discharge well describe the typical S-shape performance curve of the axial pump.

도로터널에서 제트팬 근처의 재순환유동과 연기 역류현상의 상호작용 분석 (Analysis of Interaction Between Recirculating Flow Near The Jet Fan and The Backlayer of Smoke in a Road Tunnel)

  • 김창균;유진웅;김성준
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.191-201
    • /
    • 2005
  • A numerical analysis was done for a tunnel fire in a 1000m road tunnel. A cartesian coordinate was adopted to make a computational grid sytem which has 448,000 computational cells. A transient flow phenomena in the tunnel was simulated by the commercial code of PHEONICS from the ignition of fire to 600 seconds by the interval of 100 seconds. Total computational time of about 44 hours was required to get a convered solution in each time step. The purpose of this research is to analyze of the backlayering pheonomena and recirculation flow in a tunnel. The compuational results say that the backlayering does not happens near the fire of vehicle in this case because the vehicle fire is located at the outside of recirculation zone of flow ocuured near the jet fan. In this research, onset of backlayering pheonomena could be escaped if jet fan is set 95m in front of the the fire of vehicle.

  • PDF

기계식 인공심장판막의 경량화 구조설계를 위한 혈액유동과 상호작용하는 판막거동의 구조역학적 특성연구 (Structural Analysis on the Leaflet Motion Interacted with Blood Flow for Thickness Minimization Design of a Bileaflet Mechanical Heart Valve)

  • 권영주;방혜철;김창녕
    • 한국CDE학회논문집
    • /
    • 제6권1호
    • /
    • pp.59-68
    • /
    • 2001
  • This paper investigates the structural analysis and design of mechanical heart valve through the numerical analysis methodology. In a numerical analysis methodology application to the thickness minimization structural design of mechanical heart valve, fluid analysis is performed for the blood flow through a bileaflet mechanical heart valve. Simultaneously the kinetodynamic analysis is carried out to obtain the appropriate structural condition for the structural analysis. Thereafter the structural static analysis is also carried out to confirm the thickness minimization structural condition(minimum thickness shape of leaflet).

  • PDF