• Title/Summary/Keyword: Computational and Experimental Practices

Search Result 17, Processing Time 0.02 seconds

A Case Study on the Application of Hands-on Computational and Experimental Practices in Applied Mechanics of Materials (전산 및 실험적 실무기반의 응용재료역학 교과목 적용에 관한 사례연구)

  • Park, Sun-Hee;Suh, Yeong Sung
    • Journal of Engineering Education Research
    • /
    • v.17 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The purpose of this work is to provide systematic lecture materials for instructers who search for the effective teaching of applied mechanics of materials course with respect to lecture contents, teaching methods, and itemized course evaluations according to each class learning objective. For this. the evolution of teaching contents since 2010 until 2014 are briefly depicted and then most recent course learning objectives, lecture contents, and evaluation schemes are presented in detail. The results of this study may be used as base line data for the lecturers who teach similar courses and for the evaluation of program outcomes in ABEEK scheme through course-embedded assessment.

Medical Image Storage System based on Computational Grid (계산 그리드 기반 의료영상 저장시스템)

  • Ahn, Byoung-Kyu;Park, Jae-Hyun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.10
    • /
    • pp.715-723
    • /
    • 2009
  • The use of medical imaging in hospitals is being gradually increased as it is of utmost importance in treatment and diagnosis of patients. With the drastic increase of the usage of medical imaging in hospitals per day necessitates more speedy and accurate systems for precise diagnosis and the treatment. Hence the modality and development of network infrastructure are also need to be improved day by day and this trend may be continued. Thus there is a great need improvement of PACS concerned. In this paper, by using the computational grid technology, we design a medical image storage system that improve the compression speed, and implement a prototype as a part of PACS. We also demonstrate the performance improvement from experimental results of the prototype.

The Analysis of Inquiry Activity in the Material Domain of the Elementary Science Textbook by Science and Engineering Practices (과학 공학적 실천에 의한 초등학교 과학 교과서 물질 영역의 탐구 활동 분석)

  • Cho, Seongho;Lim, Jiyeong;Lee, Junga;Choi, GeunChang;Jeon, Kyungmoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.2
    • /
    • pp.181-193
    • /
    • 2016
  • We examined the inquiry activities in the material domain of the elementary science textbooks and experimental workbooks based on 2009 revised curriculum. The analysis framework was SEP (Science and Engineering Practices) - 'Asking questions and defining problems', 'developing and using models', 'planning and carrying out investigations', 'analyzing and interpreting data', 'using mathematics and computational thinking', 'constructing explanations and designing solutions', 'engaging in argument from evidence', and 'obtaining, evaluating, and communicating information'. Sub-SEP of each grade band were also used. The results showed that the $3^{rd}{\sim}5^{th}$ grade science textbooks and workbooks mainly emphasized 'make observations and/or measurements', 'represent data in tables and/or various graphical displays', or 'use evidence to construct or support an explanation or design a solution to a problem' among around 40 sub-SEP. In the case of the inquiry activities for $6^{th}$ grade, majority of sub-SEP included were also only 'collect data to produce data to serve as the basis for evidence to answer scientific questions or test design solutions', 'analyze and interpret data to provide evidence for phenomena' or 'construct a scientific explanation based on valid and reliable evidence obtained from sources'. The type of 'asking questions and defining problems', 'using mathematics and computational thinking' or 'obtaining, evaluating, and communicating information' were little found out of 8 SEP. Educational implications were discussed.

An Efficient Mode Decision Method for Fast Intra Prediction of SVC (SVC에서 빠른 인트라 예측을 위한 효율적인 모드 결정 방법)

  • Cho, Mi-Sook;Kang, Jin-Mi;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.280-283
    • /
    • 2009
  • To improve coding performance of scalable video coding which is an emerging video coding standard as an extension of H.264/AVC, SVC uses not only intra prediction and inter prediction but inter-layer prediction. This causes a problem that computational complexity is increased. In this paper, we propose an efficient intra prediction mode decision method in spatial enhancement layer to reduce the computational complexity. The proposed method selects Inra_BL mode using RD cost of Intra_BL in advance. After that, intra mode is decided by only comparing DC modes. Experimental results show that the proposed method reduces 59% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible.

Revisiting PageRank Computation: Norm-leak and Solution (페이지랭크 알고리즘의 재검토 : 놈-누수 현상과 해결 방법)

  • Kim, Sung-Jin;Lee, Sang-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.11 no.3
    • /
    • pp.268-274
    • /
    • 2005
  • Since introduction of the PageRank technique, it is known that it ranks web pages effectively In spite of its usefulness, we found a computational drawback, which we call norm-leak, that PageRank values become smaller than they should be in some cases. We present an improved PageRank algorithm that computes the PageRank values of the web pages correctly as well as its efficient implementation. Experimental results, in which over 67 million real web pages are used, are also presented.

A Parallel Algorithm for Measuring Graph Similarity Using CUDA on GPU (GPU에서 CUDA를 이용한 그래프 유사도 측정을 위한 병렬 알고리즘)

  • Son, Min-Young;Kim, Young-Hak;Choi, Sung-Ja
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.156-164
    • /
    • 2017
  • Measuring the similarity of two graphs is a basic tool to solve graph problems in various applications. Most graph algorithms have a high time complexity according to the number of vertices and edges. Because Graphics Processing Units (GPUs) have a high computational power and can be obtained at a low cost, these have been widely used in graph applications to improve execution time. This paper proposes an efficient parallel algorithm to measure graph similarity using the CUDA on a GPU environment. The experimental results show that the proposed approach brings a considerable improvement in performance and efficiency when compared to CPU-based results. Our results also show that the performance is improved significantly as the size of the graph increases.

Phase Mode Decision Scheme for Fast Encoding in H.264 SVC (H.264/AVC 스케일러블 비디오 코딩에서 빠른 부호화를 위한 단계적 모드 선택 기법)

  • Goh, Gyeong-Eun;Kang, Jin-Mi;Cho, Mi-Sook;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.793-797
    • /
    • 2008
  • To achieve flexible visual contents adaptation for multimedia communications, the ISO/IEC MPEG & ITU-T VCEG form the JVT to develop an SVC amendment for the H.264/AVC standard. JVT uses inter-layer prediction that can improve the rate-distortion efficiency of the enhancement layer. But inter-layer prediction causes computational complexity to be increased. In this paper, we propose a fast mode decision for inter frame coding. It makes use of the correlation between optimized prediction mode and its RD cost. Experimental results show that the proposed schemes save up to 38% of encoding time with a negligible coding loss and bit-rate increase.

Multi-view Video Coding using the Constrained Inter-view Prediction (다시점 비디오 부호화에서 시점 간 예측 제한 방법)

  • Chun, Sung-Hwan;Shin, Kwang-Mu;Kim, Ki-Wan;Chung, Ki-Dong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.8
    • /
    • pp.788-792
    • /
    • 2008
  • In this paper, we propose a method that uses the constrained inter-view prediction for multi-view video coding. In the multi-view video, there exists occluded area because of the locations and angles of cameras. This increases the computational complexity, as it still uses both reference pictures for predicting the area which is not shown in the current frame. In this paper, we propose a method that does not use the inter-view prediction in cases of the occluded macroblocks. Experimental results show that benefits about 4% can be achieved compared with the conventional approaches.

Molecular Computing Simulation of Cognitive Anagram Solving (애너그램 문제 인지적 해결과정의 분자컴퓨팅 시뮬레이션)

  • Chun, Hyo-Sun;Lee, Ji-Hoon;Ryu, Je-Hwan;Baek, Christina;Zhang, Byoung-Tak
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.700-705
    • /
    • 2014
  • An anagram is a form of word play to find a new word from a set of given alphabet letters. Good human anagram solvers use the strategy of bigrams. They explore a constraint satisfaction network in parallel and answers consequently pop out quickly. In this paper, we propose a molecular computational algorithm using the same process as this. We encoded letters into DNA sequences and made bigrams and then words by connecting the letter sequences. From letters and bigrams, we performed DNA hybridization, ligation, gel electrophoresis and finally, extraction and separation to extract bigrams. From the matched bigrams and words, we performed the four molecular operations again to distinguish between right and wrong results. Experimental results show that our molecular computer can identify cor rect answers and incorrect answers. Our work shows a new possibility for modeling the cognitive and parallel thinking process of a human.

Multi GPU Based Image Registration for Cerebrovascular Extraction and Interactive Visualization (뇌혈관 추출과 대화형 가시화를 위한 다중 GPU기반 영상정합)

  • Park, Seong-Jin;Shin, Yeong-Gil
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.445-449
    • /
    • 2009
  • In this paper, we propose a computationally efficient multi GPU accelerated image registration technique to correct the motion difference between the pre-contrast CT image and post-contrast CTA image. Our method consists of two steps: multi GPU based image registration and a cerebrovascular visualization. At first, it computes a similarity measure considering the parallelism between both GPUs as well as the parallelism inside GPU for performing the voxel-based registration. Then, it subtracts a CT image transformed by optimal transformation matrix from CTA image, and visualizes the subtracted volume using GPU based volume rendering technique. In this paper, we compare our proposed method with existing methods using 5 pairs of pre-contrast brain CT image and post-contrast brain CTA image in order to prove the superiority of our method in regard to visual quality and computational time. Experimental results show that our method well visualizes a brain vessel, so it well diagnose a vessel disease. Our multi GPU based approach is 11.6 times faster than CPU based approach and 1.4 times faster than single GPU based approach for total processing.