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Abstract Since introduction of the PageRark technique, it is known that it ranks web pages
effectively. In spite of its usefulness, we found a computational drawback, which we call norm-leak,
that PageRank values become smaller than they should be in some cases. We present an improved
PageRank algorithm that computes the PageRank values of the web pages correctly as well as its
efficient implementation. Experimental results, in which over 67 million real web pages are used, are

also presented.
Key words :

1. Introduction

The link structure of the web is a rich source of
information about the content of the environment
[1]. The PageRank[23] exploits the link structure of
web pages to measure the relative importance of
web pages. A page has a high PageRank value if
there are many pages that point to it, or if pages
that point to it have high PageRank values. It is
known that PageRank helps
effectively.

rank web pages

In the computation of the PageRank algorithms
[3,4], the
PageRank values are represented as a matrix and a

hyperlink structure of the web and
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vector, respectively. A repeated computation of
matrix-vector multiplications derives the PageRank
vector. The sum of ali PageRank values should be
maintained to be one during the entire computation.
However, we learned that the sum becomes less
than one as the computation process continues in
some cases. In those cases, all PageRank values
become smaller than they should be.

Several studies [4-7] pointed out the drawback of
the PageRank algorithm. However, they dealt with
the drawback very shortly in terms of theoretical
respects only. This paper gives much more detailed
descriptions about the drawback and show how
severely PageRank values of web pages can be
miscalculated in the real web and also in some
small artificial webs.
PageRank algorithm that computes the PageRank

We present an improved
values of the web pages correctly. Our algorithm
works out well in any situations, and the sum of

all PageRank values is always maintained as one.
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We also present an efficient implementation for the
improved algorithm.

Besides this introduction, section 2 surveys the
original PageRank algorithm[4], and section 3 discusses
a drawback of the original PageRank algorithm and
presents an improved PageRank algorithm. Our
experimental evaluations of algorithms and their
results are in section 4. Section 5 contains closing

remarks.

2. PageRank Computation

Let v be a web page, F, be the set of pages v
points to, and Bv be the set of pages that point to
v. Let Ny =
from v. The PageRank(PR) equation [3] for v is

|[F,l be the number of unique links

recursively defined as:
ORI n

The pages and hyperlinks of the web can be
viewed as nodes and edges in a directed graphl[8l.
Let M be a square matrix with the rows and
columns corresponding to the directed graph G of
the web, assuming all nodes in G have at least one
outgoing edge. If there is at least one link from
page j to page i(i.e, in other words, more than one
link are regarded as one link), then the matrix
entry my has a value 1/N;. The values of all other
entries are zero. The PageRank values of all pages
are represented as an N x 1 matrix (a vector),
Rank. The ith entry, rank(i), in Rank represents
the PageRank value of page i.

M Rank Rank

1 2 3 4 8
1[040 o]0 0025 0.025
2fololowz[0 o100 | __ | o100
3 {1 [1/4] o [1/e2]1/z] | 0325 | — | 0325
4 [ o4 0o [172] | o200 0.200
5[0o1/a[ 100 0.350 0.350

Figure 1 A small web, its matrix, and its PageRank

values

Figure 1 shows an example of M and Rank.
Page 5 has two outgoing links to page 3 and 4 (N5
= 2), ms and mus of M are (1/2), and rmus, mgs and
mss are 0. Page 5 is pointed by page 2 and 3, so
its PageRank value is determined by PageRank
values of page 2 and 3. Since page 2 and 3 have

four outgoing links and one outgoing link
respectively, the PageRank of page 5, rank(5), is
the sum of one fourth of rank(2) and rank(3).

Computation of the equation (1) can be
represented by a matrix calculation: Rank = M x
Rank. The vector, Raﬁk, is the principle eigenvector
of the matrix M. Rank can be computed by
applying M to an initial Rank matrix [1 / Nl
repeatedly, where [1 / Nlva is an N x I matrix
in which all entries are (1/N) [34)]. Let Rank; be
the i intermediate Rank, Rank; be the initial Eank,
and Rankiq be M x Rank; (e, Ranki; = M x
Rank;). Rank; is converged to a fixed point as i
increases. The converged Rank; (ie., Rank) contains
all the PageRank values of pages.

To overcome the RankSink[3,4] problem, they
introduced a new matrix M’, where transition edges
of probability (d/N) between every pair of nodes in
G are added to M. Those transition edges are
called virtual links. Let &V be the number of total
pages, and [1 / Nlnx~y be an N x N square matrix
in which all entries are (1/N). The equation (2)
shows matrix M'. The constant d, which is called

a dampening factor, should be less than one.
W=e-dm+d§] @
The definition of M’ has an intuitive basis in
random walks on graphs. A surfer keeps clicking
on successive links at random, but the surfer gets
bored periodically and jumps to a random page.
The dampening factor in equation (2) denotes the
probability that a surfer jumps to a random page
during surfing.

3. An Improved PageRank Computation

An L; norm (simply norm) represents the sum of
all entries in a vector. A page with no outgoing
edge is called a dangling page. Consider the web

M

[
/' 1 2 3 L) 5
g r——" (-4X0)+d(UNRO-A X 14) +d(1NY (1-dX0) +d(I/N)] (1)) +d(I/N)| (1-4X0} +d(I/N)|
o (1-4)0) +d(UN] (1-X0) + A(1/N)} (1-4X0) + A(IAY(1-AX1/2) +d(UN)|  (1-a X0} +d(1N)|
(1<4X0) + d(UN)|(1-8X 114} + 41N} (1-4X0) + (N|(1-d X172} + AN -4 X112} + d{E/N)|

(1-a)0) + 4N (1-aX374) + AN (14)0) + 4| (1-6X0)+ AN Y(1-AX112) + BOAN;
(1-dX0) + (1N (1-X1/4) + d(I/NY (-6 K1) ¢ G(INY| (1-0)O)+ A(IN)| (1-dX0) + d(1/N)|

[ERF P

Figure 2 A small web with a dangling page and
its matrix M’
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Rank; Rank;,,
a mya + MpEP + My + mMEd + mge
ﬂ mya + mllﬂ ALUTE B mils + Mze
M x Y = mya ¢ mgB ¢ myy ¢ Myd ¢ myge
8 Mmya + MuB + Myy + Myud + Mye
€ Mg 0 ¢ MgaB ¢ Mgyy + My + Mgse

The norm of Rank,; = (M M s My s My s Mg)a * (Mg s My s Myg + My + Meg) B+
(Mg + Mg+ Myy * ey * M) Y+ (Mg * Myg * Myy + Mag + Mgy} 8+

(Mg # Mzp + Mg + Myp + Myg) &

Figure 3 The norm of Rank;.;, given Figure 2

structure and M’ in Figure 2. Since page 1 is a
dangling page, the norm of the first column vector
of M is not one, but d. The other columns of A’
have the norm with one.

Let Ranki be (8,57, where T stands for
Then Rank;; and its
represented in Figure 3. The norm of Ranki is (d*

transposition. norm are

a+B+y+6+e). Because d is less than one, the
norm of Ranki:; is less than the norm of Ranki.:
by (I-d)*a. This is contrary to the property that
the norm of Rank should be maintained to be one
during the entire computation process. During the
iteration of matrix-vector multiplication, Fank; loses
a part of its norm continuously. We call this
phenomenon norm-leak. This phenomenon takes
place when there are dangling pages.

The norm-leak phenomenon has critical implications
in terms of computation. First, PageRank values are
likely to be smaller than they should be, and might
become all zeroes in the worst case. Second, the
iteration process might not converge to a fixed
point, because the norms of Ranki and Ranki.; are
not the same.

In order to put an emphasis on the original link
structure of the web (ignoring the virtual links at
the same time) in the computation of PageRank values,
we need to use a small value of the dampening
of iterations.
Interestingly enough, the norm-leak problem becomes

factor and wuse a large number

evident when we wuse a small value of the
dampening factor and a large number of iterations.
The norm-leak problem is subject to diminish the
importance of the original link structure in the
computation.

PageRank

computation. First, we need to define a new matrix

Let wus describe an improved

2o A4 A 11 E A 3 (20086

M'. The matrix M~ is the same as M, except that
a dangling column of M is replaced by [1 / Nlnx.
Let D be a set of dangling pages. Let <1 / N>y
be an N x N matrix in which entry my is (I/N)
if j is equal to p and my is zero otherwise. The pth
column of <1 / N>n«np is exactly [1 / Nly«1. Then
M is expressed as:

1
M+ ) <—>NxN,
,; N ! 3

When a web page has outgoing edges to each of

M =

all nodes including itself, then the page is said to
have a complete set of edges. Note that each
dangling page has a complete set of edges in M.

Now, apply the dampening factor to avoid the
RankSink problem. We get a new matrix, which
we call M’

*

M = (-dM* +d[%]NxN

4

Given Figure 2, the matrix M~ is described in
Figure 4. The first column of M’ can be represented
as {1 / Nlnx1, no matter what a dampening factor
d is. Note that the norm of each column of M" is
always one.

In the matrixes M* and M", each page in G has
its own links and a complete set of edges. When a
page in both M and M is non-dangling, it
distributes d of its importance to all pages, and
(1-d) of its importance to pages along with original
links. However, a dangling page in M~ evenly
distributes all of its importance to all pages, while

a dangling page in M’ distributes (I1-d) of
importance to all pages.
1 2 3 4 5

(1-d)(1/N) « d(1/N) | (1-d)(2/4) + H{1/N)|  (1-dXO) « d(1/N)| (1-dX0)+ d(1/N)| (1-d)(O) + d(1/N)
(1-dXI/N) + d(I/NY | (1-d)(0) « d(1/N) | (1-dX0) + d(1/N) ] (1-d)X1/2) + d(1/N)|  (1-d)(0) + d(L/N)
{1-d)(2/N) « d(1/N} | (1-d)(2/4) + d(1/N)}|  (1-dXO) + d(1/N) | (1-d}(1/2) + J(1/N) | (1-d)(1/2) + d(1/N)
(1-d)X1/N) + d(1/N} | (1-d)(1/4) + d(1/N}| (1-dX0) + d(/N)|  (1-dX0) + d{1/N)| (1-d)(2/2) + d(1/N)
(1-dX1/N) « d(I/N) | (1-d)X174) + d(1/N) | (1-dX1) + d(1/N)|  (1-dXO) + d(I/N)| (1-dX(0) + d(1/N)

Figure 4 Example of M’

[ I S

The improved PageRank algorithm uses the
matrix M instead of M’ (or M). M is not sparse,
and handling M as it is requires significant
overhead in terms of space and time. We transform
the expression, M~ x Rank, into an efficient form

(see equation (5)), which is more amenable to
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efficient processing. M~ is replaced by the right-hand
side of equation (4). Multiplication of a matrix, [ 1 /
Nlvsy, and a vector, Rank, always produces a
vector, all of whose elements are (I/N). M is
replaced by the right-hand side of equation (3).
Finally, multiplication of a matrix, Zpep<I/N>wp
and a vector, Rank, is equivalent to multiplication
of a vector, [1/Nls«y, and a constant, Xyeprank(p).

M’ x Rank = ((]—d)MF + d[%]NxN] x Rank
= (1-d)M* x Rank + d[%]le

=(1—d)(M+Z<%>NxN,P]XRank + d[%]/\’xl

PeD

= (I-d)M x Rank + (1—d)(2<%>zvx~,p xRank) + d[%]m

PeD

= (1-d)YM x Rank + (l—d)[[%]le menk(p)J + d[%]le

peD

1V, SourceVectords| =1/ N

2 residual= 1

3 while (restdual > } {
D

/ vector initialization

{d) = 0 // vector
J variable for preserving leaked values

Yo
leakedValue = 0

11" eof)’ 1s a function feturning “TRUE’ when the file pointer indicates the end of the Links file
while (not Links.eof)) {

10 1f source: identification number for source node

u If . oumber of outgoing edges in current source node

12 1 desty: number for " d ion node

13 Links.read(source, 1, dest, dests, ..., desty)

14

15 if == 0 then

16 v leakedValue + Vectorl; |

17 else

18 41 Distribute the PageRank value of the current node 1 to each destination node
19 forj=1..n

20 De rldesq) = D {dest] + (. Hisource] / )
21 End if

2 )

24 fork=1..N
2 D {dest] = D Vectoridest) + N

21 Vg DestinationVectorld| = (DAMPENING x DestinationVectorld) + ({1 - DAMPENING) | )
28 residual = ||(SourceVector- DestinationVector)]|  // the sum of all the elements in the result vector
29 SourceVector = DestinationVector

Figure 5 Matrix-vector multiplication for the improved
PageRank algorithm

In view of implementation issues, it is better to
compute PageRank values with equation (5). Only
non-zero entries in the matrix M and all entries in
in disk. For the
computation of (I-d) M x Rank, it is sufficient to

the vector Rank are stored

read the matrix and the vector only once. The
computation time of M x Rank is much faster than
that of M* x Rank because M is generally sparse.
All (I-d) rank(p) (the leaking values) is accumulated
to a variable during the multiplication of the matrix
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and the vector, and then the sum of leaking values
is redistributed to all pages at once.

The link structure for the web graph should be
stored in a file, referred to as Links. The file is
separated into three fields: SourceNode, OutDegree,
DestinationNodes. node 100 has two
outgoing edges to node 200 and 300. Then, a

Suppose

record in the file contains 100 for SourceNode, 2
for OutDegree, 200 and 300 for DestinationNodes.
The matrix-vector multiplication can be implemented
as shown in Figure 5. We create two arrays of
floating point values representing the rank vectors,
called SourceVector and DestinationVector. Each
vector has N entries. The PageRank values for
are held and the
PageRank values for iteration (i+l) are constructed

iteration in SourceVector,
in DestinationVector. In the 5‘}“ line, leakedValue is
initialized to 0 before every matrix-vector multiplication.
In the 16" line, for a single multiplication, leaked
values from dangling pages are .accumulated to
leakedValue. Finally, the accumulated leaked value
is distributed to all the pages uniformly, in the 24
and the 25% line, after the multiplication. The
dampening factor is denoted as DAMPENING in
the “'th line.

4. Evaluations

In order to see how severely the norm-leak
problem affects the computation of PageRank, we
applied the improved PageRank algorithm and the
original one with two set of web pages. In our
experiment, the maximum number of iteration for
computation was set to 15, and multiple dampening
factors were considered.

Figure 6 A ten-page web with three dangling pages



272 AR =7A:

200

180 Tmas0 Y
g 160 +Z:Z‘;5 g
2 140 S d-05 |
> 120 -
;§ 100
r .080
| 060
a 040

.020

.000
| Page identifiers

(a)

I 200
| 180 | 4= d =0

1 -« * —&-d=015|;
§ 138 VaN : /’\\ —4—d=0.5 |]
S 420 LA JRY
2 P4 SN VN
c 100 t e /!
g 000 Nt
o 060 \V, ST
R .040 V/

020 |— -

.000 . - - + -

1 2 3 4 5 6 7 8 9 10
L Page identifiers
(b)
Figure 7 PageRank values of ten pages
First, we constructed a small web with ten

pages, three of which are dangling ones, shown in
Figure 6. Figure 7(a) shows the result of the
original PageRank algorithm. Because pages 5, 8,
and 10 give away a fraction (here d) of their
importance to all pages, (1-d) of the importance is
lost on each iteration. The smaller a dampening
factor value is, the smaller PageRank values are. In
particular, the broken line with d = 0 does not
indicate importance of pages at all, since all
PageRank values become virtually zero. Figure 7(b)
shows the result of the improved PageRank
algorithm. Although there are three dangling pages,
the norm of Rank is always maintained as one,
independent of dampening factors.

Second, with the help of a web robot [9] we
crawled over 67 million real web pages from
Korean sites in September 2003, and applied the
improved algorithm to them. It is simply not
feasible to show all PageRank values of the pages.
In order to show the distribution of values of
PageRank among the pages, we did as follows. We

grouped the pages into 1000 groups randomly. With

FEY A4 A 11 B A 3 Z(Q0066)

0.004
0
53 0003
53
3 0.002
¥
ol |
38 0001 freede t
o W
a
0
-~ 3 3 2 = 5 8 & 3 B
—_— o~ [ae} <t vy =] ~ o0 (=%
Page group identifiers
1.2
1 —
0.8 <
E LR
c 0.6 g = +
z
0.4
0.2
0 1 i
0 5 10 15
Number of iterations
(a)
0.004
o
23 0.003
58 : I |
2 0.002 : K
£c ,
=
3%
<0 0.001
@
o
0
-~ 3 2 2 2 2 2 & 3 3
— N N <+ wy o [ o« *
Page group identifiers
1.2
I e e e e e e e e S SRS
0.8
£
o 0.6
p=4
0.4
0.2
O H 1
0 5 10 15
Number of iterations
(b)

Figure 8 Accurmulated PageRank values and variations
of norm (with d = 0.15)

over 67 million pages, a single group contained
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Figure 9 Accumulated PageRank values and variations
of norm (with d = 0)

approximately over 67,000 pages. The PageRank
values of the pages that belonged to the same

group were accumulated into a variable. There
of which has the
accumulated PageRank value. We plotted all the

were 1000 groups, each
1000 accumulated PageRank values graphically, as
shown in Figure 8 and 9.

Figure 8(a) shows the experimental result of the
original PageRank algorithm with dampening factor
0.15. The upper figure in Figure 8(a) shows that
most of the accumulated PageRank values were
smaller than 0.001, which implies intuitively that
the sum of all values might be less than one. The
lower figure in Figure 8(a) shows how the norm
changes over iterations. After 15 multiplications, the
sum of all PageRank values was 0.57. Figure 8(b)
exhibits the experimental result of the improved
PageRank algorithm. Most of the accumulated
PageRank values were plotted around 0.001. The
sum of all PageRank values was indeed exactly
one at all times. )

Experimental results using a dampening factor
zero are shown in Figure 9. In the original
PageRank algorithm, a matrix M~ with a dampening
factor zero is the same as a matrix M. During the
matrix-vector multiplication, the matrix M caused
the norm to leak severely, as shown in Figure 9(a).
After 15 multiplications, the sum of all PageRank
values was 0.35. In the improved algorithm,
dropping a dampening factor to zero didn't affect a
norm. The upper figures in Figure 8(b) and 9(b) are
similar. The norm-leak phenomenon didn’t take place

in the improved algorithm, as expected.

5. Closing Remarks

The original PageRank algorithm postulates all
web pages have at least one hyperlink. The
assumption is simply invalid in a practical sense,
since there are many dangling pages in the world.
We identify the norm-leak

caused by dangling pages in the web, and also its

problem, which is

bad effect on the computation of PageRank values
of the web pages. A solution to avoid the norm-leak
problem is proposed, and experiments of the
algorithms are presented too.

- The calculation of PageRank values was done in
a modern personal computer (PentiumIV-1.7GHz,

512M bytes main memory). Even in the case of
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over 67 million web pages, it took only a few
hours to compute PageRank values. In terms of
space overhead, our implementation required only a
few additional mega-byte disk spaces to store the

information on dangling pages.
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