• Title/Summary/Keyword: Computational Wind Engineering

Search Result 803, Processing Time 0.031 seconds

Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis (파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

Utilization of $CO_2$ Influenced by Windbreak in an Elevated Production System for Strawberry (딸기 고설재배시설에서의 이산화탄소 농도 유지를 위한 방풍막 설치 효과)

  • Kim, Y.-H.;Lee, I.-B.;Chun, Chang-Hoo;Hwang, H.-S.;Hong, S.-W.;Seo, I.-H.;Yoo, J.-I.;Bitog, Jessie P.;Kwon, K.-S.
    • Journal of Bio-Environment Control
    • /
    • v.18 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • The influence of windbreak to minimize the ventilation velocity near the plant canopy of a greenhouse strawberry was thoroughly investigated using computational fluid dynamics (CFD) technology. Windbreaks were constructed surrounding the plant canopy to control ventilation and maintain the concentration of the supplied $CO_2$ from the soil surface close to the strawberry plants. The influence of no windbreak, 0.15 m and 0.30 m height windbreaks with varied air velocity of 0.5, 1.0 and 1.5 m/s were simulated in the study. The concentrations of supplied $CO_2$ within the plant canopy of were measured. To simplify the model, plants were not included in the final model. Considering 1.0m/s wind velocity which is the normal wind velocity of greenhouses, the concentrations of $CO_2$ were approximately 420, 580 and 653 ppm ($1{\times}10^{-9}kg/m^3$) for no windbreak, 0.15 and 0.30 m windbreak height, respectively. Considering that the maximum concentration of $CO_2$ for the strawberry plants was around 600-800 ppm, the 0.30 m windbreak height is highly recommended. This study revealed that the windbreak was very effective in preserving $CO_2$ gas within the plant canopy. More so, the study also proved that the CFD technique can be used to determine the concentration of $CO_2$ within the plant canopy for the plants consumption at any designed condition. For an in-depth application of this study, the plants as well as the different conditions for $CO_2$ utilization, etc. should be considered.

A Study on Lightweight Design of Cantilever-type Helideck Using Topology Design Optimization (위상 최적설계를 활용한 캔틸레버식 헬리데크 경량화 연구)

  • Jung, Tae-Won;Kim, Byung-Mo;Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.453-460
    • /
    • 2017
  • In the offshore industry, helicopters are mainly used for transportation of goods or operating personnel between offshore sites and onshore facilities. A helideck is a structure that is required for landing and take-off of helicopters on the offshore structure. There are several shapes of helidecks depending on the type of offshore structures or installation location. Among them, cantilever-type helidecks usually provide more space on the topside of offshore structures and it is safer against potential accidents like fire or explosion. In this paper, the cantilever-type helideck is selected for the research object and topology design optimization is applied for lightweight design of the helideck. A finite element model is then created from the optimal layout of truss structures of the helideck, and structural analysis is performed under various landing conditions and wind loads. Based on the analysis results, the detailed section dimensions of structural members are determined so that the maximum stress at each structure member does not exceed the allowable stress of the structural material. Also, the final optimal design shows significant decrease in the total weight of the helideck.

Study on Optimum Installation of Fan in Standard Hanwoo Loose Barn (한우사 내 송풍팬의 최적 설치에 관한 연구)

  • Lee, Seung-Joo;Chang, Dong-Il;Choi, Yoon-Hyuck;Yang, Jae-Woong;Min, Byeong-Joo;Gutierrez, Winson M.;Chang, Hong-Hee
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.350-356
    • /
    • 2010
  • The fans installed in standard Hanwoo loose barns (room size : 10 m (width) $\times$ 5 m (length)) are frequently used to reduce Hanwoo's heat stress during hot weather and to dry the wet floor. However, the most effective method of installing fans has not been suggested yet. Therefore, this study was carried out to evaluate two methods of installing fans under the ceiling of Hanwoo loose barn by using CFD (Computational Fluid Dynamics) code, FLUENT and to recommend the optimum fan installing method. The fan installation options were fan tilting angles of $45^{\circ}$ and $0^{\circ}$ (horizontal). The fans of 1 m diameter were installed at 3 m above floor. A velocity scale on 10 cm and 110 cm above floor and air flow pattern were used as the parameters to evaluate the fan installing methods. The fans tilted at $45^{\circ}$ angle produced higher wind at 10 cm and 110 cm above floor and more uniform air flow pattern, compared with the fans installed horizontally. Based on these results, fans tilted at $45^{\circ}$ angle may help to reduce Hanwoo's heat stress and will dry the floor better than fans installed horizontally. Therefore, it is suggested that the fans of 1 m diameter in a standard Hanwoo loose barn should be installed at a $45^{\circ}$ tilt angle and 3 m above floor with spacing of 5 m at the center of a room column.

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST (KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증)

  • Jung, Seongmun;Han, Jaeseong;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.

Evaluation of Aerodynamic Characteristics of NREL Phase VI Rotor System Using 2-Way Fluid-Structure Coupled Analysis Based on Equivalent Stiffness Model (등가강성모델 기반의 양방향 유체구조 연성해석을 적용한 NREL Phase VI 풍력 로터 시스템의 공력특성 평가)

  • Cha, Jin-Hyun;Song, Woo-Jin;Kang, Beom-Soo;Kim, Jeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.731-738
    • /
    • 2012
  • In this study, the evaluation of the aerodynamic characteristics of the NREL Phase VI Rotor System has been performed, for the 7 m/s upwind case using commercial FEA and CFD tools which are ANSYS Mechanical 12.1 and CFX 12.1. The initial operating conditions of the rotor blade include a $3^{\circ}$ tip pitch angle. A numerical simulation was carried out on only the rotor parts, excluding the tower structure based on the equivalent stiffness model, to consider the aeroelastic effect for the numerical simulation using the loosely coupled 2-way fluid-structure interaction method. The blade root bending moment was monitored in real time to obtain reasonable results. To verify the analysis results, the numerical simulation results were compared with the measurements in the form of the root bending moment and the pressure distributions of the NREL/NASA Ames wind tunnel test.

Boundary Layer Correction of Hypersonic Wind-tunnel Nozzle Designed by the Methods of Characteristics (특성곡선 해법 설계 극초음속 노즐의 경계층 보정)

  • Kim, So-Yeon;Kim, Sung Don;Jeung, In-Seuck;Lee, Jong-Kuk;Choi, Jeong-Yol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.12
    • /
    • pp.1028-1036
    • /
    • 2014
  • A design procedure is established for hypersonic nozzles by using MOC(Method of Characteristics) and CFD. The inviscid nozzle contour is designed by MOC, then BLC(Boundary Layer Correction) is made by evaluating the boundary layer thickness from viscous CFD analysis. By comparing various definitions of the boundary layer thicknesses, it seems that the boundary layer thickness of 95% speed of the maximum value at the cross section satisfies best the design Mach number. Design procedure is as follow; MOC design, grid generation, inviscid analysis, viscous analysis, BLC and viscous analysis for confirmation and post-processing. All procedures are made automatically by using the batch processing.

Numerical Prediction of Acoustic Load Around a Hammerhead Launch Vehicle at Transonic Speed (해머헤드 발사체의 천음속 음향하중 수치해석)

  • Choi, Injeong;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • During atmospheric ascent of a launch vehicle, airborne acoustic loads act on the vehicle and its effect becomes pronounced at transonic speed. In the present study, acoustic loads acting on a hammerhead launch vehicle at a transonic speed have been analyzed using ��-ω SST based IDDES and the results including mean Cp, Cprms, and PSD are compared to available wind-tunnel test data. Mesh dependency of IDDES results has been investigated and it has been concluded that with an appropriate turbulence scale-resolving computational mesh, the characteristic flow features around a transonic hammerhead launch vehicle such as separated shear flow at fairing shoulder and its reattachment on rear body as well as large pressure fluctuation in the region of separated flow behind the boat-tail can be predicted with reasonable accuracy for engineering purposes.

Numerical Study on Atmospheric Dispersion and Fire Possibility in Toluene Leakage (톨루엔 누출 시 대기확산 및 화재가능성에 관한 수치해석 연구)

  • Ko, Jae Sun;Kim, Joo-Seok
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.1-10
    • /
    • 2017
  • This study examined the risk of accidents when handling hazardous materials in hazardous materials storage facilities without safety facilities. In the case of illegal dangerous cargo containers, the burning rate is very fast in the case of fire, which leads to explosions, that are damaging and difficult to control. In addition, accidents that occur in flammable liquid hazardous materials are caused mostly by accidents that occur in the space due to leakage. Therefore, the variables that affect these accidents were derived and the influence of these variables was investigated. Numerical and computational fluid dynamics programs were used to obtain the following final results. First, when a flammable liquid leaks into a specific space, it is influenced by temperature and relative humidity until a certain concentration (lower limit of combustion) is reached. In the case of temperature, it was found that the reaching time was shorter than the flash point In addition, the effect of variables on pool fire accidents of leakage tanks is somewhat different, but the variables that have the largest influence are the wind speed. Therefore, it is expected that the results of this study will be used as basic data for similar numerical analysis and it will provide useful numerical information about the accidental leakage of hazardous materials under various research conditions.

Seismic and Stress Analysis of 72.5kV GIS for Technical Specification of KEPCO (72.5kV GIS 전력 장비의 KEPCO 기준 내진 및 응력 해석)

  • Lee, Jae-Hwan;Kim, Young-Joong;Kim, So-Ul;Bang, Myung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.207-214
    • /
    • 2017
  • High voltage electric power transmitter GIS(Gas Insulated Switchgear) above 72.5kV needs to satisfy domestic Korean peninsular standard(ES-6110-0002) in KEPCO with respect to normal and special operation conditions which include internal gas pressure, dead weight, wind and seismic load. Some other requirements not described in Korean standard can be applied from other international standards such as IEC(International Electronical Committee) 62271-203 and 62271-207. The GIS is a kind of pressure vessel structure made of aluminum and filled with SF6 gas of internal pressure 0.4~0.5MPa. Finite element analysis of GIS is performed with such operational loads including seismic loading and the stability and reliability is determined according to ASME BPVC(Boiler and Pressure Vessel Code) SEC. VIII standard where the allowable stress level of the pressure vessel is suggested. The result shows that the stress of GIS is satisfied the allowable stress level and the safety factor is about 2.3 for Korean peninsular standard.