• Title/Summary/Keyword: Computational Techniques

Search Result 1,280, Processing Time 0.027 seconds

Analysis on the Computational complexities of Motion Editing for Graphic Animation (효율적인 애니메이션을 위한 모션 에디팅 방법의 계산량분석에 관한 연구)

  • Lee, Jihong;Kim, Insik;Kim, Sungsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.28-36
    • /
    • 2002
  • Regarding efficient development of computer graphic animations, lots of techniques for editing or transforming existing motion data have been developed. Basically, the motion transformation techniques follow optimization process. To make the animation be natural, almost all the techniques utilize kinematics and dynamics in constructing constraints for the optimization. Since the kinematic and dynamic structures of virtual characters to be animated are very complex, the most time-consuming part is known to the optimization process. In order to suggest some guide lines to engineers involved in the motion transformation, in this paper, we analyze the computational complexities for typical motion transformation in quantitative manner as well as the possibility for parallel computation.

Efficient and User-Friendly Image Retrieval System Based on Query by Visual Keys

  • Serata, M.;Sakuma, K.;Stejic, Z.;Kawamoto, K.;Nobuhara, H.;Yoshida, S.;Hirota, K.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.451-454
    • /
    • 2003
  • A new query method, called query by visual keys, is proposed to aim easy operation and efficient region-based image retrieval (RBIR). Visual keys are constructed from representative regions/subimages in a given image database, and the database is indexed with visual keys. A system on PC is presented, where text retrieval techniques are applied to the image retrieval with visual keys. Experimental results show that one retrieval is done within 4ms and that the proposed system achieves the comparable retrieval precision (with user-friendly operation and low computational cost) to conventional region based image retrieval systems

  • PDF

Algorithm for the Constrained Chebyshev Estimation in Linear Regression

  • Kim, Bu-yong
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • This article is concerned with the algorithm for the Chebyshev estimation with/without linear equality and/or inequality constraints. The algorithm employs a linear scaling transformation scheme to reduce the computational burden which is induced when the data set is quite large. The convergence of the proposed algorithm is proved. And the updating and orthogonal decomposition techniques are considered to improve the computational efficiency and numerical stability.

  • PDF

An Adaptive Block Matching Algorithm based on Temporal Correlations

  • Yoon, Hyo-Sun;Son, Nam-Rye;Lee, Guee-Sang;Kim, Soo-Hyung
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.188-191
    • /
    • 2002
  • To reduce the bit-rate of video sequences by removing temporal redundancy, motion estimation techniques have been developed. However, the high computational complexity of the problem makes such techniques very difficult to be applied to high-resolution applications in a real time environment. For this reason, low computational complexity motion estimation algorithms are viable solutions. If a priori knowledge about the motion of the current block is available before the motion estimation, a better starting point for the search of n optimal motion vector on be selected and also the computational complexity will be reduced. In this paper, we present an adaptive block matching algorithm based on temporal correlations of consecutive image frames that defines the search pattern and the location of initial starting point adaptively to reduce computational complexity. Experiments show that, comparing with DS(Diamond Search) algorithm, the proposed algorithm is about 0.1∼0.5(㏈) better than DS in terms of PSNR and improves as much as 50% in terms of the average number of search points per motion estimation.

  • PDF

PARALLEL CFD SIMULATIONS OF PROJECTILE FLOW FIELDS WITH MICROJETS

  • Sahu Jubaraj;Heavey Karen R.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.05a
    • /
    • pp.94-99
    • /
    • 2006
  • As part of a Department of Defense Grand Challenge Project, advanced high performance computing (HPC) time-accurate computational fluid dynamics (CFD) techniques have been developed and applied to a new area of aerodynamic research on microjets for control of small and medium caliber projectiles. This paper describes a computational study undertaken to determine the aerodynamic effect of flow control in the afterbody regions of spin-stabilyzed projectiles at subsonic and low transonic speeds using an advanced scalable unstructured flow solver in various parallel computers such as the IBM SP4 and Linux Cluster. High efficiency is achieved for both steady and time-accurate unsteady flow field simulations using advanced scalable Navier-Stokes computational techniques. Results relating to the code's portability and its performance on the Linux clusters are also addressed. Numerical simulations with the unsteady microjets show the jets to substantially alter the flow field both near the jet and the base region of the projectile that in turn affects the forces and moments even at zero degree angle of attack. The results have shown the potential of HPC CFD simulations on parallel machines to provide to provide insight into the jet interaction flow fields leading to improve designs.

  • PDF

A Study on the Statistical Model Validation using Response-adaptive Experimental Design (반응적응 시험설계법을 이용하는 통계적 해석모델 검증 기법 연구)

  • Jung, Byung Chang;Huh, Young-Chul;Moon, Seok-Jun;Kim, Young Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.347-349
    • /
    • 2014
  • Model verification and validation (V&V) is a current research topic to build computational models with high predictive capability by addressing the general concepts, processes and statistical techniques. The hypothesis test for validity check is one of the model validation techniques and gives a guideline to evaluate the validity of a computational model when limited experimental data only exist due to restricted test resources (e.g., time and budget). The hypothesis test for validity check mainly employ Type I error, the risk of rejecting the valid computational model, for the validity evaluation since quantification of Type II error is not feasible for model validation. However, Type II error, the risk of accepting invalid computational model, should be importantly considered for an engineered products having high risk on predicted results. This paper proposes a technique named as the response-adaptive experimental design to reduce Type II error by adaptively designing experimental conditions for the validation experiment. A tire tread block problem and a numerical example are employed to show the effectiveness of the response-adaptive experimental design for the validity evaluation.

  • PDF

Topology Optimization Using Homogenized Material and Penalty Factor (균질재료와 벌칙인자를 이용한 위상 최적설계)

  • 임오강;이진식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.3-10
    • /
    • 1998
  • Optimization problems may be devided into geometry optimization problems and topology optimization problems. In this paper, a method using tile equivalent material properties prediction techniques of a particulate-reinforced composites is proposed for the topology optimization. This method makes use of penalty factor in order that regions with intermediate value of design variables can be penalized. The computational results being obtained from PLBA algorithm of some values of penalty factor are presented.

  • PDF

A Study on Excavation Responses of Underground Openings for Radioactive Waste Disposal (굴착으로 인한 방사성폐기물 지하처분공동의 거동변화)

  • 김선훈;김대홍;최규섭;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.174-179
    • /
    • 1992
  • In this paper a discussion is presented about excavation responses of underground openings for radioactive waste disposal. The effects of excavation methods, stress redistribution, thermal change, and backfill materials are reviewed. Comparisons of computational models for discontinuous reek masses and discussions on numerical simulation techniques for the excavation of underground openings are also described. Finally, the application of the CAD system to the planning, design and construction of underground openings fop radioactive waste disposal is introduced.

  • PDF

Modal Analysis of Steel Box Bridge by Using the Component Mode Synthesis (CMS 방법에 의한 강교량의 동적모드해석)

  • 조병완;박종칠;김영진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.177-184
    • /
    • 1997
  • The Component Mode Synthesis Method for the -vibration analysis can be applied to the large-scaled structures, which have difficulty in modeling because of their intricate shapes and boundary conditions and need much time in computational calculations. This paper uses the Component Mode Synthesis Method to analyze the free vibration for the steel box bridge having the large number of D.O.F as an example of the large structural system. By comparing the CMS method to the other method (FEM), this paper proves the accuracy of the solution in techniques and the efficiency in time.

  • PDF

Simulation Techniques for Mid-Frequency Vibro-Acoustics Virtual Tools For Real Problems

  • Desmet, Wim;Pluymers, Bert;Atak, Onur;Bergen, Bart;Deckers, Elke;Huijssen, Koos;Van Genechten, Bert;Vergote, Karel;Vandepitte, Dirk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.49-49
    • /
    • 2010
  • The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the nite element and boundary element method. Due to the huge computational eorts involved, the use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational eorts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational eciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Tretz approach is being developed at the K.U.Leuven - Noise and Vibration Research group. This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based technique and its hybrid coupling with nite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its benecial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.

  • PDF