• 제목/요약/키워드: Computational Science Platform

검색결과 86건 처리시간 0.025초

An Empirical Study on the Intention to Reuse Computational Science and Engineering Platforms: A Case Study of EDISON

  • On, Noori;Ryu, Gi-Myeong;Koh, Myoung-Ju;Lee, Jongsuk Ruth;Kim, Nam-Gyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권8호
    • /
    • pp.3437-3456
    • /
    • 2020
  • The computational science and engineering field, which combines basic science and computing technology, has emerged as a third scientific methodology, following theories and experiments. This study aimed to identify factors and relationships that affect the continued use of the computational science and engineering (CSE) platform for its successful operation, utilization, and diffusion. To that end, the quality factors of the platform were derived by combining the information system success model and the technology acceptance model. These factors affected user satisfaction and intention to reuse through users' perceived usefulness and perceived ease of use of the platform. An empirical analysis was conducted through a questionnaire survey of 373 users of the EDISON platform, a representative CSE platform in Korea. The results revealed that all quality factors have a positive influence on perceived usefulness and perceived ease of use. Specifically, information quality has a significant influence on perceived ease of use, and system quality has a significant influence on perceived usefulness. Perceived ease of use has a greater impact on user satisfaction than perceived usefulness, and satisfaction affects intention to reuse. The results can contribute to the development of CSE platforms and the development strategy to expand the number of users.

Design and Implementation of Information Management Tools for the EDISON Open Platform

  • Ma, Jin;Lee, Jongsuk Ruth;Cho, Kumwon;Park, Minjae
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권2호
    • /
    • pp.1089-1104
    • /
    • 2017
  • We have developed an information management tool for the EDISON (EDucation-research Integration through Simulation On the Net) open platform. EDISON is, at present, a web-based simulation service for education and research in five computational areas, namely, nanophysics, fluid dynamics, chemistry, structural dynamics, and computer aided optimal design. The EDISON open platform consists of three tiers: EDISON application framework, EDISON middleware, and EDISON infra-resources. The platform provides web portals for education and research in areas such as computational fluid dynamics, computational chemistry, computational nanophysics, computational structural dynamics, and computer aided optimal design along with user service. The main purpose of this research is to test the behavior of the release version of the EDISON Open-Platform under normal operating conditions. This management tool has been implemented using the RESTful API designed in EDISON middleware. The intention is to check co-operation between the middleware and the infrastructure. Suggested tools include User management, Simulation and Job management, and Simulation software (i.e., solver) testing. Finally, it is considered meaningful to develop a management tool that is not supported in other web-based online simulation services.

계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼 (EDISON Platform to Supporting Education and Integration Research in Computational Science)

  • 진두석;정영진;이종숙;조금원;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 추계학술대회
    • /
    • pp.466-469
    • /
    • 2011
  • 최근에는 열유체, 물리, 화학, 구조동역학, 전산설계 등의 응용과학 분야의 교육 및 연구에 실제 실험이 아닌 슈퍼컴퓨터 및 고성능 네트워크 기반의 사이버 인프라에서 과학적 가정에 의해 복잡한 공학문제를 수치적 모델링과 컴퓨터 시뮬레이션을 통해 해결하는 계산과학을 이용하는 최적의 방법론 및 기법들의 연구의 필요성이 증대되고 있다. 본 논문에서는 컴퓨팅 시뮬레이션 기법을 활용한 실험 체험형 교육의 일환으로, 이공계 교수, 학생, 연구자, 산업체 인력 등이 사이버 인프라스트럭처 기반으로 최신 시뮬레이션 SW를 활용하여 차세대 교육 연구를 융합할 수 있는 EDISON 개방형 통합 플랫폼을 제시한다. EDISON 플랫폼은 사용자들에게 보다 쉽고, 편하고, 효과적인 서비스 제공을 위해 3계층(EDISON 응용 프레임워크, EDISON 미들웨어, EDISON 인프라 자원)으로 구성되고 5개 분야(열유체, 화학, 물리, 구조동역학, 전산설계) 문제해결 환경을 위한 교육 연구용 웹 포털 서비스를 제공한다.

  • PDF

계산과학플랫폼 기반 온라인 양자화학 실험 환경 개발 (Development of Online Quantum Chemistry Experiment Environment Based on Computational Science Platform)

  • 전인호;온누리;권예진;서정현;이종숙
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.97-107
    • /
    • 2020
  • This paper introduces an online experiment environment based on a computational science platform that can be used for various purposes ranging from basic education to quantum chemistry and professional quantum chemistry research. The simulation environment was constructed using a simulation workbench and simulation workflow, which are execution environment services of Science App provided by the computational science platform. We developed an environment in which learners can learn independently without an instructor by selecting experiment topics that can be used in various areas of chemistry, and offering the learning materials of the topics in a form of e-learning content that includes theory and simulation exercises. To verify the superiority of the proposed system, it was compared with WebMO, a state-of-the-art web-based quantum chemistry simulation service.

Optimal design of hydraulic support landing platform for a four-rotor dish-shaped UUV using particle swarm optimization

  • Zhang, Bao-Shou;Song, Bao-Wei;Jiang, Jun;Mao, Zhao-Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권5호
    • /
    • pp.475-486
    • /
    • 2016
  • Four-rotor dish-shaped unmanned underwater vehicles (FRDS UUVs) are new type underwater vehicles. The main goal of this paper is to develop a quick method to optimize the design of hydraulic support landing platform for the new UUV. In this paper, the geometry configuration and instability type of the platform are defined. Computational investigations are carried out to study the hydrodynamic performance of the landing platform using the Computational Fluid Dynamics (CFD) method. Then, the response surface model of the optimization objective is established. The intelligent particle swarm optimization (PSO) is applied to finding the optimal solution. The result demonstrates that the stability of landing platform is significantly improved with the global objective index increasing from 1.045 to 1.158 (10.86% higher) after the optimization process.

Analysis of Computational Science and Engineering SW Data Format for Multi-physics and Visualization

  • Ryu, Gimyeong;Kim, Jaesung;Lee, Jongsuk Ruth
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.889-906
    • /
    • 2020
  • Analysis of multi-physics systems and the visualization of simulation data are crucial and difficult in computational science and engineering. In Korea, Korea Institute of Science and Technology Information KISTI developed EDISON, a web-based computational science simulation platform, and it is now the ninth year since the service started. Hitherto, the EDISON platform has focused on providing a robust simulation environment and various computational science analysis tools. However, owing to the increasing issues in collaborative research, data format standardization has become more important. In addition, as the visualization of simulation data becomes more important for users to understand, the necessity of analyzing input / output data information for each software is increased. Therefore, it is necessary to organize the data format and metadata for the representative software provided by EDISON. In this paper, we analyzed computational fluid dynamics (CFD) and computational structural dynamics (CSD) simulation software in the field of mechanical engineering where several physical phenomena (fluids, solids, etc.) are complex. Additionally, in order to visualize various simulation result data, we used existing web visualization tools developed by third parties. In conclusion, based on the analysis of these data formats, it is possible to provide a foundation of multi-physics and a web-based visualization environment, which will enable users to focus on simulation more conveniently.

Data Framework Design of EDISON 2.0 Digital Platform for Convergence Research

  • Sunggeun Han;Jaegwang Lee;Inho Jeon;Jeongcheol Lee;Hoon Choi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권8호
    • /
    • pp.2292-2313
    • /
    • 2023
  • With improving computing performance, various digital platforms are being developed to enable easily utilization of high-performance computing environments. EDISON 1.0 is an online simulation platform widely used in computational science and engineering education. As the research paradigm changes, the demand for developing the EDISON 1.0 platform centered on simulation into the EDISON 2.0 platform centered on data and artificial intelligence is growing. Herein, a data framework, a core module for data-centric research on EDISON 2.0 digital platform, is proposed. The proposed data framework provides the following three functions. First, it provides a data repository suitable for the data lifecycle to increase research reproducibility. Second, it provides a new data model that can integrate, manage, search, and utilize heterogeneous data to support a data-driven interdisciplinary convergence research environment. Finally, it provides an exploratory data analysis (EDA) service and data enrichment using an AI model, both developed to strengthen data reliability and maximize the efficiency and effectiveness of research endeavors. Using the EDISON 2.0 data framework, researchers can conduct interdisciplinary convergence research using heterogeneous data and easily perform data pre-processing through the web-based UI. Further, it presents the opportunity to leverage the derived data obtained through AI technology to gain insights and create new research topics.

계산과학 분야의 교육 및 융합연구 지원을 위한 EDISON 플랫폼 (EDISON Platform to Supporting Education and Integration Research in Computational Science)

  • 진두석;정영진;정회경
    • 한국정보통신학회논문지
    • /
    • 제16권1호
    • /
    • pp.176-182
    • /
    • 2012
  • 최근에는 응용과학 분야의 교육 및 연구에 실제 실험이 아닌 슈퍼컴퓨터 및 고성능 네트워크 기반의 사이버 인프라에서 과학적 가정에 의해 복잡한 공학문제를 수치적 모델링과 컴퓨터 시뮬레이션을 통해 해결하는 계산과학을 이용하는 기법들의 필요성이 증대되고 있다. 본 논문에서는 컴퓨팅 시뮬레이션 기법을 활용한 실험 체험형 교육의 일환으로, 이공계 교수, 학생, 연구자, 산업체 인력 등이 사이버 인프라스트럭처 기반으로 시뮬레이션 SW를 활용한 교육 및 융합연구를 지원하는 EDISON 플랫폼을 제시한다. EDISON 플랫폼은 사용자들에게 보다 쉽고, 편하고, 효과적인 서비스 제공을 위해 3계층(EDISON 응용 프레임워크, EDISON 미들웨어, EDISON 인프라 자원)으로 구성되고 5개 분야(열유체, 화학, 물리, 구조동역학, 전산설계) 문제해결 환경을 위한 교육 연구용 웹 포털 서비스를 제공한다.

중소·중견기업을 위한 사용자 친화형 웹 기반 ezSIM 플랫폼 개발 (User-friendly Web-based ezSIM Platform Development for SMBs)

  • 윤태호;박형욱;손일엽;황재순;서동우
    • 한국CDE학회논문집
    • /
    • 제20권1호
    • /
    • pp.65-74
    • /
    • 2015
  • Structure and/or fluid analysis is gradually increased by an essential design process in the small and medium-sized businesses (SMBs) because of the needs for a rapid design process and the certification about the supplement of the parts by the large business (LB). In this paper, we developed the web-based ezSIM platform installed in the resources integrated system server. The ezSIM platform is based on the heterogeneous linux and windows operating system for the user-friendly connection with the part of the analysis for the SMBs. The procedure of the structure/fluid analysis service module using the public software and the license-free open code in the ezSIM platform was explained. The convenience of the ezSIM platform service was presented by the reaction rate of the graphic motion compared with that of a local PC and the solving and pre-post processing interface compared with that of the KISTI supercomputer. The web-based ezSIM platform service was identified as a useful and essential platform to the SMBs for the usage of the structure and/or fluid analysis procedure.

수중 운동체의 거동 및 표면 압력하중 예측에 관한 수치적 연구 (A Computational Study About Behavior of an Underwater Projectile and Prediction of Surficial Pressure Loading)

  • 조성민;권오준
    • 한국군사과학기술학회지
    • /
    • 제20권3호
    • /
    • pp.405-412
    • /
    • 2017
  • In the present study, two phase flows around a projectile vertically launched from an underwater platform have been numerically investigated by using a three dimensional multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. The relative motion between the platform and projectile was described by six degrees of freedom(6DOF) equations of motion with Euler angles and a chimera technique. The propulsive power of the projectile was modeled as the fluid force acting on the lower surface of the body by the compressed air emitted from the platform. Qualitative analysis was conducted for the time history of vapor volume fraction distributions. Uncorking pressure around the projectile and platform was analyzed to predict impact force acting on the surfaces. The results of 6DOF analysis presented similar tendency with the surficial pressure distributions.