• Title/Summary/Keyword: Computational Fluid Dynamics Simulation

Search Result 984, Processing Time 0.03 seconds

Efficient Super-element Structural Vibration Analyses of a Large Wind-turbine Rotor Blade Considering Rotational and Aerodynamic Load Effects (회전 및 풍하중 가진 효과를 고려한 대형 풍력발전 로터의 효율적인 슈퍼요소 구조진동해석)

  • Kim, Dong-Man;Kim, Dong-Hyun;Park, Kang-Kyun;Kim, Yu-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.651-658
    • /
    • 2009
  • In this study, computer applied engineering(CAE) techniques are fully used to efficiently conduct structural and dynamic analyses of a huge composite rotor blade using super-element. Computational fluid dynamics(CFD) is used to predict aerodynamic loads of the rotating wind-turbine blade. Structural vibration analysis is conducted based on the non-linear finite element method for composite laminates and multi-body dynamic simulation tools. Various numerical results are presented for comparison and the structural dynamic behaviors of the rotor blade are investigated herein.

Computational Fluid Dynamics Study on Particle Rejection in Microfiltration

  • Nakao, Shin-ichi;Goto, Tomomasa;Tanaka, Nobuyuki;Yamamoto, Atsushi;Takaba, Hiromitsu
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.15-18
    • /
    • 2004
  • Computational fluid dynamics (CFD) was applied to modeling particle dynamics in microfiltration (MF). The rejection properties of poly methylmethacrylate (PMMA) and polystyrene (PS) were calculated. Calculated rejection (R) of PMMA was independent with the porosity of the membrane, and the R was constant in the range of volume flux between $1\times 1-^{-4}-1\times 10^{-2}$ m/s. These observations were in quantity agreement with our experimental observations. The dependence of PMMA and PS rejection on the ratio of particle diameter and pore diameter were good agreement with the experimental values, which suggesting that the validity of CFD simulation to evaluate rejection of particle in MF membranes. Change of rejection of PMMA as a function of time was molded based on the CFD result which explained well the experimental observation.

  • PDF

A study on particles flow through gas injection in pot (가스분사를 통한 Pot내에서의 입자 거동연구)

  • Kim Sungsu;Baek Jehyun;Choi Minsuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.144-149
    • /
    • 2002
  • This paper presents the result of numerical simulation of particles trace following melted zinc movement with nitrogen gas injection. The code of the computational fluid dynamics for numerical analysis was performed using FLUENT related to CFD. As application model, there was applied Eulerian multiphase model for simulation of melted zinc movement at first and then was used stochastic tracking technique for particles trace secondarily. Numerical simulation results are shown that particles move to the same direction as the movement of melted zinc.

  • PDF

AERODYNAMIC ANALYSIS AND EXPERIMENTAL TEST FOR 4-BLADED VERTICAL AXIS WIND-TURBINE USING LARGE-EDDY SIMULATION (LES) TURBULENCE MODEL (LES 난류모델을 이용한 4엽형 수직축 풍력발전기 공력해석 및 실험)

  • Ryu, G.J.;Kim, D.H.;Choo, H.H.;Shim, J.P.
    • Journal of computational fluids engineering
    • /
    • v.17 no.3
    • /
    • pp.11-17
    • /
    • 2012
  • In this study, aerodynamic analyses have been conducted for 4-Bladed Vertical-Axis Wind Turbine (VAWT) configuration and the results are compared with experimental data. Reynolds-averaged Navier-Stokes equation with LES turbulence model is solved for unsteady flow problems. In addition, the computation results by standard k-${\omega}$ and SST k-${\omega}$ turbulence models are also presented and compared. An experiment model of 4-Bladed VAWT model has been designed and constructed herein. Experimental tests for aerodynamic performance of the present VAWT model are practically conducted using the vehicle mounted testing system. Comparison results between the experiment and the computational fluid dynamics (CFD) analyses are presented in order to show the accuracy of CFD analyses using the different turbulent models.

Simulation and Model Validation of Combustion in a Wood Pellet Boiler Using Computational Fluid Dynamics (전산유체역학을 이용한 목재펠릿보일러 연소모델 정립 및 검증)

  • Oh, Kwang Cheol;Euh, Seung Hee;Oh, Jae Heun;Kim, Dae Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, combustion behaviour were to analyze by comparing experimental data against predicted values. In developing pellet boiler performance, various factors such as combustion chamber shape, input air velocity, the amount of fuel, temperature, and fuel characteristics need to be analyzed. Analytical model using a numerical method is useful to overcome time and cost consuming by practical experiment. By controlling feeding rate of fuel, flue gas composition and temperature distribution obtained form experiment were compared with predicted values using FLUENT(ANSYS, Inc., Southpointe). Measurement were in good agreement with model predictions : with 0.60 % for $CO_2$ 0.73% for $O_2$ when compared with independent data sets.

Analysis of Airflow Pattern in Plant Factory with Different Inlet and Outlet Locations using Computational Fluid Dynamics

  • Lim, Tae-Gyu;Kim, Yong Hyeon
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.310-317
    • /
    • 2014
  • Purpose: This study was conducted to analyze the air flow characteristics in a plant factory with different inlet and outlet locations using computational fluid dynamics (CFD). Methods: In this study, the flow was assumed to be a steady-state, incompressible, and three-dimensional turbulent flow. A realizable k-${\varepsilon}$ turbulent model was applied to show more reasonable results than the standard model. A CFD software was used to perform the numerical simulation. For validation of the simulation model, a prototype plant factory ($5,900mm{\times}2,800mm{\times}2,400mm$) was constructed with two inlets (${\Phi}250mm$) and one outlet ($710mm{\times}290mm$), located on the top side wall. For the simulation model, the average air current speed at the inlet was $5.11m{\cdot}s^{-1}$. Five cases were simulated to predict the airflow pattern in the plant factory with different inlet and outlet locations. Results: The root mean square error of measured and simulated air current speeds was 13%. The error was attributed to the assumptions applied to mathematical modelling and to the magnitude of the air current speed measured at the inlet. However, the measured and predicted airflow distributions of the plant factory exhibited similar patterns. When the inlets were located at the center of the side wall, the average air current speed in the plant factory was increased but the spatial uniformity was lowered. In contrast, if the inlets were located on the ceiling, the average air current speed was lowered but the uniformity was improved. Conclusions: Based on the results of this study, it was concluded that the airflow pattern in the plant factory with multilayer cultivation shelves was greatly affected by the locations of the inlet and the outlet.

SIMULATION OF EXPERIMENTAL VISUALIZATION METHODS FOR COMPUTATIONAL FLUID DYNAMICS RESEARCH

  • TAMURA Y.;FUJII K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.44-68
    • /
    • 1995
  • In the present paper, visualization techniques in fluid dynamic experiments such as Schlieren photograph are numerically simulated so that the same output as the experimental flow visualization can be obtained from the computed results for the fair comparison. Numerical methods to simulate optical visualizations, that are Schlieren photograph, shadowgraph and interferogram, are considered. Some examples of pictures obtained by the present methods show the importance of the simulations of visualization techniques for the correct comparisons of the computations and experiments.

  • PDF

Numerical Simulation of Pressure Change inside Cabin of a Train Passing through a Tunnel (터널을 통과하는 열차의 객실 내 압력 변동 해석)

  • Kwon, H.B.;Yoon, S.H.;Nam, S.W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.337-342
    • /
    • 2011
  • The pressure transient inside the passenger cabin of high-speed train has been simulated using computational fluid dynamics(CFD) based on the axi-symmetric Navier-Stokes equation. The pressure change inside a train have been calculated using first order difference approximation based on a linear equation between the pressure change ratio inside a train and the pressure difference of inside and outside of the train. The numerical results have been assessed for the KTX train passing through a 9km long tunnel of Wonju-Kangneung line at the speed of 250km/h assuming that the train is satisfying the train specification for airtightness required by the regulation.

  • PDF

A CFD-based simulation study of a serpentine flocculation basin for potable water treatment (CFD를 이용한 우류식 응집지 수리해석에 관한 연구)

  • Kim, Seong-Su;Choi, Jong-Woong;Park, No-Suk;Kim, Kwan-Yeop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.225-233
    • /
    • 2014
  • This paper presents a Computational Fluid Dynamics(CFD) based simulation and experimental tracer test of flow pattern and turbulent energy dissipation inside a serpentine flocculation basin with continuous operation. Research focused on the evaluation of a specific flow pattern on the hydraulic behavior on the flocculation basin. From the results of CFD simulation and actual tracer test, both results were in good accordance with each other. Also, each Morill index were calculated as 1.5 from CFD simulation and 1.7 from actual tracer test, respectively. Especially, turbulence energy was dissipated relatively higher in the vicinity of inlet to the flocculation basin than other region. The differences between the CFD simulation and actual tracer test were 1.4 min in $T_{50}$, and 1.3 min in $T_p$, respectively.

Modeling of Space Shuttle Main Engine heat exchanger using Volume-Junction Method (Volume-Junction Method를 이용한 우주왕복선 액체로켓엔진 열교환기 모델링)

  • Cha, Jihyoung;Ko, Sangho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.213-217
    • /
    • 2017
  • Since more than 30% of the liquid rocket engine failures occur during the start-up process, and the Space Shuttle Main Engine (SSME) is especially sensitive to small changes in propellant conditions, a 2% error in the valve position or a 0.1sec timing error could lead to significant damage of the engine, simulation modeling of start-up process is important. However, there are many difficulties associated with engine start-up process caused by nonlinear mass flow and heat transfer characteristics associated with filling an unconditioned engine system with cryogenic propellants. In this paper, we modelled a SSME simulation model using partially Computational Fluid Dynamics (CFD) method to solve these problems and checked the performance by comparing with the performance of the simulation model using the lumped method under the state of normal condition.

  • PDF