• 제목/요약/키워드: Computational Fluid Dynamics (CFD) Model

검색결과 844건 처리시간 0.041초

A high-resolution mapping of wind energy potentials for Mauritius using Computational Fluid Dynamics (CFD)

  • Dhunny, Asma Z.;Lollchund, Michel R.;Rughooputh, Soonil D.D.V.
    • Wind and Structures
    • /
    • 제20권4호
    • /
    • pp.565-578
    • /
    • 2015
  • A wind energy assessment is an integrated analysis of the potential of wind energy resources of a particular area. In this work, the wind energy potentials for Mauritius have been assessed using a Computational Fluid Dynamics (CFD) model. The approach employed in this work aims to enhance the assessment of wind energy potentials for the siting of large-scale wind farms in the island. Validation of the model is done by comparing simulated wind speed data to experimental ones measured at specific locations over the island. The local wind velocity resulting from the CFD simulations are used to compute the weighted-sum power density including annual directional inflow variations determined by wind roses. The model is used to generate contour maps of velocity and power, for Mauritius at a resolution of 500 m.

산업환기공학에 대한 전산유체역학의 응용가능성 (Applicability of Computational Fluid Dynamics on Industrial Ventilation Engineering)

  • 하현철;김태형;심광진
    • 한국산업보건학회지
    • /
    • 제8권2호
    • /
    • pp.163-177
    • /
    • 1998
  • Computational Fluid Dynamics(CFD) was applied to predict air flow around the hoods : circular hoods, square hoods, and push-pull hoods. A commercially available CFD software, CFD-ACE(Ver. 4.0), was tested, which is based on the finite volume method using the ${\kappa}-{\varepsilon}$ turbulence model. Numerical results were compared with the experimental, analytical and numerical results from other studies. CFD solutions showed an excellent agreement with the previous experimental and numerical results. It is promising that CFD techniques could be applied on the variety of complex problems in the industrial ventilation engineering.

  • PDF

2엽형 수직축 풍력발전기의 유동해석 및 실험 비교 (AERODYNAMIC ANALYSIS AND COMPARISON OF EXPERIMENTAL DATA FOR 2-BLADED VERTICAL AXIS WIND TURBINE)

  • 황미현;김동현;이종욱;오민우;김명환;류경중
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, aerodynamic analyses based on unsteady computational fluid dynamics (CFD) have been conducted for a 2-bladed vertical-axis wind turbine (VAWT) configuration. Reynolds-averaged Navier-Stokes equations with standard $k-{\varepsilon}$ and SST $k-{\varepsilon}$ turbulence models are solved for unsteady flow problems. The experiment model of 2-bladed VAWT has been designed and tested in this study. Aerodynamic experiment of the present VAWT model are effectively conducted using the vehicle mounted testing system. The comparison result between the experiment and the computational fluid dynamics (CFD) analysis are presented in order to verify the accuracy of CFD modeling with different turbulent models.

Numerical Simulation of Turbulence-Induced Flocculation and Sedimentation in a Flocculant-Aided Sediment Retention Pond

  • Lee, Byung Joon;Molz, Fred
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.165-174
    • /
    • 2014
  • A model combining multi-dimensional discretized population balance equations with a computational fluid dynamics simulation (CFD-DPBE model) was developed and applied to simulate turbulent flocculation and sedimentation processes in sediment retention basins. Computation fluid dynamics and the discretized population balance equations were solved to generate steady state flow field data and simulate flocculation and sedimentation processes in a sequential manner. Up-to-date numerical algorithms, such as operator splitting and LeVeque flux-corrected upwind schemes, were applied to cope with the computational demands caused by complexity and nonlinearity of the population balance equations and the instability caused by advection-dominated transport. In a modeling and simulation study with a two-dimensional simplified pond system, applicability of the CFD-DPBE model was demonstrated by tracking mass balances and floc size evolutions and by examining particle/floc size and solid concentration distributions. Thus, the CFD-DPBE model may be used as a valuable simulation tool for natural and engineered flocculation and sedimentation systems as well as for flocculant-aided sediment retention ponds.

상용 CFD 코드에서 사용되는 촤 반응속도 모델에 대한 이해 (Understanding the Use of Coal Char Kinetic Models in commercial CFD Codes)

  • 김대희;최상민
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.91-94
    • /
    • 2013
  • Commercial computational fluid dynamics (CFD) codes traditionally rely on the computational efficiency of the simplified single-film apparent char kinetic model to predict char particle temperatures and char conversion rates in pulverized coal boilers. The aim of this study is to evaluate the reliability of the single-film apparent kinetic model and to suggest the importance of proper use of this model. For this, a parametric study was conducted with a consideration of main parameters such as Stefan flow, product species, particle evolution, and kinetic parameters.

  • PDF

Evaluation of Computational Fluid Dynamics for Analysis of Aerodynamics in Naturally Ventilated Multi-span Greenhouse

  • Lee, In Bok;Short, Ted H.;Sase, Sadanori;Lee, Seung Kee
    • Agricultural and Biosystems Engineering
    • /
    • 제1권2호
    • /
    • pp.73-80
    • /
    • 2000
  • Aerodynamics in a naturally ventilated multi-span greenhouse with plants was analyzed numerically by the computational fluid dynamics (CFD) simulation. To investigate the potential application of CFD techniques to greenhouse design and analysis, the numerical results of the CFD model were compared with the results of a steady-state mass and energy balance numerical model. Assuming the results of the mass and energy balance model as the standard, reasonably good agreement was obtained between the natural ventilation rates computed by the CFD numerical model and the mass and energy balance model. The steady-state CFD model during a sunny day showed negative errors as high as 15% in the morning and comparable positive errors in the afternoon. Such errors assumed to be due to heat storage in the floor, benches, and greenhouse structure. For a west wind of 2.5 m s$^{-1}$ , the internal nonporous shading screens that opened to the east were predicted to have a 15.6% better air exchange rate than opened to the west. It was generally predicted that the presence of nonporous internal shading screens significantly reduced natural ventilation if the horizontal opening of the screen for each span was smaller that the effective roof vent opening.

  • PDF

Maneuvering simulation of an X-plane submarine using computational fluid dynamics

  • Cho, Yong Jae;Seok, Woochan;Cheon, Ki-Hyeon;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.843-855
    • /
    • 2020
  • X-plane submarines show better maneuverability as they have much longer span of control plane than that of cross plane submarines. In this study, captive model tests were conducted to evaluate the maneuverability of an X-plane submarine using Computational Fluid Dynamics (CFD) and a mathematical maneuvering model. For CFD analysis, SNUFOAM, CFD software specialized in naval hydrodynamics based on the open-source toolkit, OpenFOAM, was applied. A generic submarine Joubert BB2 was selected as a test model, which was modified by Maritime Research Institute Netherlands (MARIN). Captive model tests including propeller open water, resistance, self-propulsion, static drift, horizontal planar motion mechanism and vertical planar motion mechanism tests were carried out to obtain maneuvering coefficients of the submarine. Maneuvering simulations for turning circle tests were performed using the maneuvering coefficients obtained from the captive model tests. The simulated trajectory showed good agreement with that of free running model tests. From the results, it was proved that CFD simulations can be applicable to obtain reliable maneuvering coefficients for X-plane submarines.

사이클론 집진장치의 내부 온도 변화에 따른 집진효율에 관한 전산해석적 연구 (Numerical Study on the Effect of the Internal Temperature Distribution in the Cyclone Dust Collector)

  • 현대근;장혁상
    • 한국입자에어로졸학회지
    • /
    • 제10권4호
    • /
    • pp.155-162
    • /
    • 2014
  • The internal temperature will change depending on operation conditions and material of cyclone dust collector. This study compares the results of collection efficiency and temperature distribution on the different heat flux at wall of dust collector. The previous researcher's experiment results were used to confirm the reliability of CFD(Computational Fluid Dynamics) model. Based on this verified CFD model, we extended the analysis on the cyclone dust collectors. In CFD study, we used RNG k-epsilon model for analysis of turbulence flow, fluid is air, the velocity at inlet is 10 m/s, the temperature of air is $600^{\circ}C$. Because of the difference of outer vortex and inner vortex temperature, the collection efficiency will reduce with the increase of heat flux, showed the highest collection efficiency at heat insulation.

CFD를 이용한 가향 탱크 내부 유동에 관한 연구 (A Study on Internal Flow of Mixing Tank by CFD)

  • 정한주;조성일;양진철
    • 한국연초학회지
    • /
    • 제32권2호
    • /
    • pp.63-69
    • /
    • 2010
  • In the chemical, mineral and electronics, mechanically stirred tanks are widely used for complex liquid mixing processes. The paper present results from a computational fluid dynamics (CFD) model for the mixing tank in casing process. We used CFD software, FLUENT(Fluent, Inc, Lebanon, NH, version 6.2). A species transport model was used to model the problem. The flow patterns in a mixing tank, 1.6 m in diameter and 2.0 m in height, were studied using CFD. Numerical analysis results show that improved mixing tank was reduced low speed flow region and turbulent region in internal flow of mixing tank.

Effects of upstream two-dimensional hills on design wind loads: A computational approach

  • Bitsuamlak, G.;Stathopoulos, T.;Bedard, C.
    • Wind and Structures
    • /
    • 제9권1호
    • /
    • pp.37-58
    • /
    • 2006
  • The paper describes a study about effects of upstream hills on design wind loads using two mathematical approaches: Computational Fluid Dynamics (CFD) and Artificial Neural Network (NN for short). For this purpose CFD and NN tools have been developed using an object-oriented approach and C++ programming language. The CFD tool consists of solving the Reynolds time-averaged Navier-Stokes equations and $k-{\varepsilon}$ turbulence model using body-fitted nearly-orthogonal coordinate system. Subsequently, design wind load parameters such as speed-up ratio values have been generated for a wide spectrum of two-dimensional hill geometries that includes isolated and multiple steep and shallow hills. Ground roughness effect has also been considered. Such CFD solutions, however, normally require among other things ample computational time, background knowledge and high-capacity hardware. To assist the enduser, an easier, faster and more inexpensive NN model trained with the CFD-generated data is proposed in this paper. Prior to using the CFD data for training purposes, extensive validation work has been carried out by comparing with boundary layer wind tunnel (BLWT) data. The CFD trained NN (CFD-NN) has produced speed-up ratio values for cases such as multiple hills that are not covered by wind design standards such as the Commentaries of the National Building Code of Canada (1995). The CFD-NN results compare well with BLWT data available in literature and the proposed approach requires fewer resources compared to running BLWT experiments.