• Title/Summary/Keyword: Computational Experiment

Search Result 989, Processing Time 0.025 seconds

Fire Power Analysis for Concept Exploration of Combat Vehicle (전투차량체계의 개념탐색을 위한 화력성능분석)

  • Lim, O-Kaung;Choi, Eun-Ho;Ryoo, Jae-Bong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.3
    • /
    • pp.251-258
    • /
    • 2009
  • At the stage conceptual design, combat vehicle is classified into three general categories of fire power, mobility and physical properties of system. The present research is restricted to fire power and its optimization. At the stage of conceptual designing of system, it is appropriate to consider major variables affecting fire power - including the weight of bullet, which exerts a direct influence on destroying effect, maximum range which takes long range firing in consideration. To estimate the maximum firing range, a simple interior ballistic and an exterior ballistic model were built by using the lumped parameter method, Le Duc method and point mass trajectory model. Design of experiment and regression analysis was used to derive simulations of fire power. Finally, response surface models were built and design variables were analyzed.

An Application of CAE in the Decision of Optimum Runner Size in Injection Molding (사출성형에서 런너 크기의 최적화를 위한 CAE 적용)

  • Kim, June-Min;Lyu, Min-Young;Lee, Sang-Hun;Lee, Jong-Won;Hwang, Han-Sub
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.363-366
    • /
    • 2006
  • The delivery system such as sprue, runner and gate is a waste of resin in injection molding operation. In this study the reduction of runner size has been investigated using injection molding CAE softwares, Moldflow and Moldex, and commercial CFD Softwares, Fluent and Polyflow. To verify the computational results experiment was performed. There were three considerations in deciding optimal runner size in this study: minimum pressure at the gate that makes resin fully filled in the cavity, minimum runner size that compensates shrinkage of resin in the cavity, and frozen layer thickness formed in the runner during injection. Through the computer simulations the optimal runner size that satisfies those three considerations has been decided. Although the computational results among the softwares were slightly different, it was enough to predict, the optimal runner size. The previous runner diameter was 8 mm and predicted optimal size was 5 mm. This was verified by injection molding experiment. Thus, the way of CAE application in deciding optimal runner size adapted in this study would be appropriated.

  • PDF

CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

NUMERICAL SIMULATIONS OF LOW- AND HIGH-FREQUENCY BUZZ AROUND AN AXISYMMETRIC SUPERSONIC INLET (축대칭 초음속 흡입구 주위의 저주파수 및 고주파수 버즈(Buzz)에 대한 수치모사)

  • Kwak, E.;Lee, N.;Gong, H.;Lee, S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.78-84
    • /
    • 2013
  • In this paper, numerical simulations of both low- and high-frequency buzz phenomena at the throttle ratios (T.R.) in Nagashima's experiment are performed. The dominant frequencies of the low-and high-frequency buzz in the experiment are about 109 Hz with T.R.=0.97 and 376 Hz with T.R.=0.55, respectively. An axisymmetric solver with the S-A turbulence model is used for the simulations, and DFT(Discrete Fourier Transform) on pressure histories is conducted for the buzz frequency analysis. In the present simulations, the free-stream Mach number and the Reynolds number based on the inlet diameter are 2 and $10^7$, respectively. Both the low- and high-frequency buzz phenomena are accomplished without the changes in the grid topology. The dominant frequency of the simulation is about 125 Hz with T.R.=0.97, while it is 399 Hz with T.R.=0.55.

Simulation of displacement history using contact element in traditional wooden frame (접촉요소를 적용한 전통목조 도리방향 프레임의 변위이력 시뮬레이션에 관한 연구)

  • Hwang Jong-Kuk;Hong Sung-Gul;Jung Sung-Jin;Lee Young-Wook;Kim Nam-Hee;Bae Byoung-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.421-426
    • /
    • 2006
  • To examine the behaviors of traditional wooden structural frame in Korea in direction of beam, an experimental study was performed. The interior frame of Daewoongjeon of Bongjeongsa was selected as a model, which has two short exterior columns and one high inside column. The experimental frame has 1/2 scale and lateral forces are applied at high inside column by using drift control. The vertical gravity loads are applied on the frame. From the results of experiment it was shown that the stiffness and lateral capacity of the frame was increased when vertical loads are applied and the force-drift relationship in positive load direction was not same as in negative load direction. And push-over analysis are performed by using macro model in which the rotational and shear springs which were derived from the another experiments of subassemblies were used. The numerical analysis with macro model showed a good correspondence with the experiment within 2% story drift.

  • PDF

Analysis of the flow field around an automobile with Chimera grid technique (Chimera 격자기법을 이용한 자동차 주위의 유동장 해석)

  • An, Min-Gi;Park, Won-Gyu
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.39-51
    • /
    • 1998
  • This paper describes the analysis of flow field around an automobile. The governing equations of the 3-D unsteady incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. To validate the capability of simulating the flow around a ground vehicle, the flows around the Ahmed body with 12.5$^{\circ}$ and 30$^{\circ}$ of slant angles are simulated and good agreements with experiment and other numerical results are achieved. To validate Chimera grid technique, the flow field around a cylinder was also calculated. The computed results are also well agreed with other numerical results and experiment. After code validations, the flow phenomena around the ground vehicle are evidently shown. The flow around the side-view mirror is also well simulated using the Chimera grid technique.

  • PDF

Computational Study of Hypersonic Real Gas Flows Over Cylinder Using Energy Relaxation Method (에너지 완화법을 이용한 실린더 주위의 극초음속 실제기체 유동에 관한 수치해석적 연구)

  • Nagdewe, Suryakant;Kim, H.D.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.216-217
    • /
    • 2008
  • In recent years, scientific community has found renewed interest in hypersonic flight research. These hypersonic vehicles undergo severe aero-thermal environment during their flight regimes. During reentry and hypersonic flight of these vehicles through atmosphere real gas effects come into play. The analysis of such hypersonic flows is critical for proper aero-thermal design of these vehicles. The numerical simulation of hypersonic real gas flows is a very challenging task. The present work emphasizes numerical simulation of hypersonic flows with thermal non-equilibrium. Hyperbolic system of equations with stiff relaxation method are identified in recent literature as a novel method of predicting long time behaviour of systems such as gas at high temperature. In present work, Energy Relaxation Method (ERM) has been considered to simulate the real gas flows. Navier-Stokes equations A numerical scheme Advection Upstream Splitting Method (AUSM) has been selected. Navier-Stokes solver along with relaxation method has been used for the simulation of real flow over a circular cylinder. Pressure distribution and heat flux over the surface of cylinder has been compared with experiment results of Hannemann. Present heat flux results over the cylinder compared well with experiment. Thus, real gas effects in hypersonic flows can be modeled through energy relaxation method.

  • PDF

Tolerance Optimization of Design Variables in Lower Arm by Using Response Surface Model and Process Capability Index (반응표면모델과 공정능력지수를 적용한 로워암 설계변수의 공차최적화)

  • Lee, Kwang Ki;Ro, Yun Cheol;Han, Seung Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.359-366
    • /
    • 2013
  • In the lower arm design process, a tolerance optimization of the variance of design variables should be preceded before manufacturing process, since it is very cost-effective compared to a strict management of tolerance of products. In this study, a design of experiment (DOE) based on response surface model (RSM) was carried out to find optimized design variables of the lower arm, which can meet a given requirement of probability constraint for the process capability index (Cpk) of the weight and maximum stress. Then, the design space was explored by using the central composite design method, in which the 2nd order Taylor expansion was applied to predict a standard deviation of the responses. The optimal solutions satisfying the probability constraint of the Cpk were found by considering both of the mean value and the standard deviation of the design variables.

Performance evaluation of sea water heat exchanger installed in the submerged bottom-structure of floating architecture

  • Sim, Young-Hoon;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1062-1067
    • /
    • 2015
  • Floating architecture is a type of building that is geographically located on a sea or a river. It floats under the influence of buoyancy, and does not have an engine for moving it. Korea is a peninsula surrounded by sea except on the north side, so floating architectures have been mainly focused on two points: solving the issue of small territory and providing various leisure & cultural spaces. Floating architectures are expected to save energy effectively, if they use sea water heat, which is known to be clean energy with infinite reserves. To use sea water heat as the heat source and/or heat sink, this study proposes a model in which a sea water heat exchanger is embedded in the concrete structure in the lower part of the floating architecture that is submerged under the sea. Based on the results of performance evaluations of the sea water heat exchanger using CFD (computational fluid dynamics) analysis and mock-up experiments under various conditions, it is found out that the temperature difference between the inlet and outlet of the heat exchanger is in the range of $3.06{\sim}9.57^{\circ}C$, and that the quantity of heat transfer measured is in the range of 3,812~7,180 W. The CFD evaluation results shows a difference of 5% with respect to the results of mock-up experiment.

Estimation of Topographic Effects over 3-Dimensional Hills through Wind Tunnel Tests (풍동실험을 이용한 3차원 산악지형의 풍속할증평가)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Cho, Gi-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.745-750
    • /
    • 2007
  • This paper presents investigation of topographic effects over isolated 3-dimensional hills through wind tunnel experiments in a boundary layer wind tunnel. Topographic models having five different slopes of $5.71^{\circ},\;11.31^{\circ},\;16.70^{\circ},\;21.80^{\circ}$, and $26.57^{\circ}$, which were based on KBC(2005), were taken into account in the study. The maximum topographic factor and the range of topographic effect from the experiment were compared with those from worldwide major codes and standards, such as ASCE-7-02, AS/NZS-1170.2:2002, ISO4354(1997), and KBC(2005). From the comparison of major codes and standards, in the vertical region of topographic effect, the gentler the slope was. the more different the topographic factors and ranges of topographic effect were, but the steeper the slope was, the more similar they were. It was found from the experimental study that the region of topographic effect in the slope in the across wind direction was greater than the regions of major codes and standard. Also, the gentler the slope was. the larger the topographic factor from the experiment was than the factors of major codes and standards.

  • PDF