• Title/Summary/Keyword: Computation process

Search Result 1,093, Processing Time 0.03 seconds

Modified SIMPLE Algorithm for the Numerical Analysis of Incompressible Flows with Free Surface (개량된 SIMPLE알고리듬을 이용한 비압축성 자유계면유동의 수치해석)

  • Hong Chun Pyo;Lee Jin ho;Mok Jin ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.609-616
    • /
    • 2005
  • While the SIMPLE algorithm is most widely used for the simulations of flow phenomena that take place in the industrial equipments or the manufacturing processes, it is less adopted for the simulations of the free surface flow. Though the SIMPLE algorithm is free from the limitation of time step, the free surface behavior imposes the restriction on the time step. As a result, the explicit schemes are faster than the implicit scheme in terms of computation time when the same time step is applied to, since the implicit scheme includes the numerical method to solve the simultaneous equations in its procedure. If the computation time of SIMPLE algorithm can be reduced when it is applied to the unsteady free surface flow problems, the calculation can be carried out in the more stable way and, in the design process, the process variables can be controlled based on the more accurate data base. In this study, a modified SIMPLE algorithm is presented fur the free surface flow. The broken water column problem is adopted for the validation of the modified algorithm (MoSIMPLE) and for comparison to the conventional SIMPLE algorithm.

A Study on the Stability of Dynamic Walking of a Humanoid Robot (휴머노이드 로봇의 동보행 안정도에 관한 연구)

  • Lee, Ji-Young;Cho, Jung-San;Lee, Sang-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.125-130
    • /
    • 2016
  • In this paper, we deal with the dynamic walking of a humanoid robot. In our method, the inverted pendulum model is used as a dynamic model for a humanoid robot in which the Zero Moment Point (ZMP) and COG constraints of the robot are analyzed by considering the motion of the robot as that of an inverted pendulum. The motion of a humanoid robot should be generated by considering the dynamics of the robot, which commonly requires a large amount of computation. If a robot walks from one position to another while keeping the ZMP in the stable region, then the robot remains dynamically stable. The linear inverted pendulum model regards the whole robot as a point mass. It is simple, and relatively less computation is needed; however, it cannot model the whole dynamics of a humanoid robot. We propose a method for modeling a humanoid robot as an inverted pendulum system having 14 point masses. We also show that the dynamic stability of a humanoid robot can be determined more precisely by our method.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • v.17 no.4
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

The Analysis of Draw-bead Process by Using Static-explicit Finite Element Method (정적 외연적 유한요소법을 이용한 비드공정해석)

  • Jung, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.604-609
    • /
    • 2001
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. In result, convergence problem and computation time due to large non-linearity in the existing numerical analysis methods were no longer a critical problem. Futhermore, this approach could treat the contact friction problem easily by applying very small time intervals. It is expected that various results from the numerical analysis will give very useful information for the design of tools in sheet metal forming process.

  • PDF

Rescheduling algorithms considering unit failure on the batch process management (회분공정의 장치 고장을 고려한 동적생산계획 기법)

  • Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1028-1031
    • /
    • 1996
  • Dynamic scheduling is very important in constructing CIM and improving productivity of chemical processing systems. Computation at the scheduling level requires mostly a long time to generate an optimal schedule, so it is difficult to immediately respond to actual process events in real-time. To solve these problems, we developed dynamic scheduling algorithms such as DSMM(Dynamic Shift Modification Method), PUOM(Parallel Unit Operation Method) and UVVM(Unit Validity Verification Method). Their main functions are to minimize the effects of unexpected disturbances such as process time variations and unit failure, to predict a makespan of the updated dynamic schedule and to modify schedule desirably in real-time responding to process time variations. As a result, the algorithms generate a new pertinent schedule in real-time which is close to the original schedule but provides an efficient way of responding to the variation of process environment. Examples in a shampoo production batch process illustrate the efficiency of the algorithms.

  • PDF

Elastic-plastic Finite Element Analysis of Drawbead Forming for Evaluation of Equivalent Boundary Conditions in Sheet Metal Forming - Part I : Evaluation (박판 성형공정에서의 등가 경계조건 계산을 위한 드로우비드 성형의 탄소성 유한요소 해석 - PartI: 등가 경계조건 계산)

  • Park, J.S.;Kim, S.H.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.11 no.6
    • /
    • pp.503-512
    • /
    • 2002
  • The drawbead is used to control material flow into the die during the binder wrap process and the stamping process in the sheet metal forming process. Since the dimension of drawbead is relatively small in comparison with the typical dimensions, it is difficult to include drawbeads in finite element analysis of the sheet metal forming process. It is because the mesh system has to be fine enough to describe the drawbead and the computation time is drastically increased. In this paper, simulation of drawbead forming has been carried out to obtain the equivalent boundary conditions in the binder wrap process and the stamping process. In order to investigate the effect of various die geometries, parameter studies are performed with the variation of parameters such as the blank length, the drawbead depth, the drawbead radius, the inclination of die and the friction coefficient.

Design of Controller for Rapid Thermal Process Using Evolutionary Computation Algorithm and Fuzzy Logic (진화 연산 알고리즘과 퍼지 논리를 이용한 고속 열처리 공정기의 제어기 설계)

  • Hwang, Min-Woong;Do, Hyun-Min;Choi, Jin-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.6
    • /
    • pp.37-47
    • /
    • 1998
  • This paper proposes a controller design method using the evolutionary computation algorithm and the fuzzy logic to control the wafer temperature in rapid thermal processing. First, we design the feedforward static controller to provide the control powers of the lamps for the given steady state temperature. Second, the feedforward dynamic controller is designed for the additional control powers to achieve a given transient response. These feedforward controllers are implemented by using the fuzzy logic to act as a global nonlinear controller over a wide range of operating points. The parameters of these controllers are optimized by using the evolutionary computation algorithm so that it can be used when the mathematical model is not available. In addition, the feedback error controller is introduced to compensate the feedforward controllers when there exist disturbances and modeling errors. The gain of feedback error controller is also obtained by the evolutionary computation algorithm. Through simulations, we verify the proposed control system can give a satisfactory performance.

  • PDF

Hardware Design of Efficient SAO for High Performance In-loop filters (고성능 루프내 필터를 위한 효율적인 SAO 하드웨어 설계)

  • Park, Seungyong;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.543-545
    • /
    • 2017
  • This paper describes the SAO hardware architecture design for high performance in-loop filters. SAO is an inner module of in-loop filter, which compensates for information loss caused by block-based image compression and quantization. However, HEVC's SAO requires a high computation time because it performs pixel-unit operations. Therefore, the SAO hardware architecture proposed in this paper is based on a $4{\times}4$ block operation and a 2-stage pipeline structure for high-speed operation. The information generation and offset computation structure for SAO computation is designed in a parallel structure to minimize computation time. The proposed hardware architecture was designed with Verilog HDL and synthesized with TSMC chip process 130nm and 65nm cell library. The proposed hardware design achieved a maximum frequency of 476MHz yielding 163k gates and 312.5MHz yielding 193.6k gates on the 130nm and 65nm processes respectively.

  • PDF

Estimation of Sejong VLBI IVP Point Using Coordinates of Reflective Targets with Their Measurement Errors (반사타겟 좌표 및 오차정보를 이용한 세종 VLBI IVP 위치계산)

  • Hong, Chang-Ki;Bae, Tae-Suk;Yi, Sangoh
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.717-723
    • /
    • 2020
  • Determination of local tie vectors between the space geodetic techniques such as VLBI (Very Long Baseline Interferometer), SLR (Satellite Laser Ranging), DORIS (Doppler Orbit determination and Radiopositioning Integrated on Satellite), GNSS (Global Navigation Satellite System) is essential for combination of ITRF (International Terrestrial Reference Frame). Therefore, it is required to compute IVP (Invariant Point) position of each space geodetic technique with high accuracy. In this study, we have computed Sejong VLBI IVP position by using updated mathematical model for adjustment computation so that the improvement on efficiency and reliability in computation are obtained. The measurements used for this study are the coordinates of reflective targets on the VLBI antenna and their accuracies are set to 1.5 mm for each component. The results show that the position of VLBI IVP together with its standard deviation is successfully estimated when they are compared with those of the results from previous study. However, it is notable that additional terrestrial surveying should be performed so that realistic measurement errors are incorporated in the adjustment computation process.