• Title/Summary/Keyword: Computation problem

Search Result 1,291, Processing Time 0.032 seconds

A METHOD FOR COMPUTING UPPER BOUNDS ON THE SIZE OF A MAXIMUM CLIQUE

  • Kim, Koon-Chan
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.745-754
    • /
    • 2003
  • Maximum clique problem is to find a maximum clique(largest in size) in an undirected graph G. We present a method that computes either a maximum clique or an upper bound for the size of a maximum clique in G. We show that this method performs well on certain class of graphs and discuss the application of this method in a branch and bound algorithm for solving maximum clique problem, whose efficiency is depended on the computation of good upper bounds.

An Algorithm based on Evolutionary Computation for a Highly Reliable Network Design (높은 신뢰도의 네트워크 설계를 위한 진화 연산에 기초한 알고리즘)

  • Kim Jong-Ryul;Lee Jae-Uk;Gen Mituso
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.4
    • /
    • pp.247-257
    • /
    • 2005
  • Generally, the network topology design problem is characterized as a kind of NP-hard combinatorial optimization problem, which is difficult to solve with the classical method because it has exponentially increasing complexity with the augmented network size. In this paper, we propose the efficient approach with two phase that is comprised of evolutionary computation approach based on Prufer number(PN), which can efficiently represent the spanning tree, and a heuristic method considering 2-connectivity, to solve the highly reliable network topology design problem minimizing the construction cost subject to network reliability: firstly, to find the spanning tree, genetic algorithm that is the most widely known type of evolutionary computation approach, is used; secondly, a heuristic method is employed, in order to search the optimal network topology based on the spanning tree obtained in the first Phase, considering 2-connectivity. Lastly, the performance of our approach is provided from the results of numerical examples.

Solving the Discrete Logarithm Problem for Ephemeral Keys in Chang and Chang Password Key Exchange Protocol

  • Padmavathy, R.;Bhagvati, Chakravarthy
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • The present study investigates the difficulty of solving the mathematical problem, namely the DLP (Discrete Logarithm Problem) for ephemeral keys. The DLP is the basis for many public key cryptosystems. The ephemeral keys are used in such systems to ensure security. The DLP defined on a prime field $Z^*_p of random prime is considered in the present study. The most effective method to solve the DLP is the ICM (Index Calculus Method). In the present study, an efficient way of computing the DLP for ephemeral keys by using a new variant of the ICM when the factors of p-1 are known and small is proposed. The ICM has two steps, a pre-computation and an individual logarithm computation. The pre-computation step is to compute the logarithms of a subset of a group and the individual logarithm step is to find the DLP using the precomputed logarithms. Since the ephemeral keys are dynamic and change for every session, once the logarithms of a subset of a group are known, the DLP for the ephemeral key can be obtained using the individual logarithm step. Therefore, an efficient way of solving the individual logarithm step based on the newly proposed precomputation method is presented and the performance is analyzed using a comprehensive set of experiments. The ephemeral keys are also solved by using other methods, which are efficient on random primes, such as the Pohlig-Hellman method, the Van Oorschot method and the traditional individual logarithm step. The results are compared with the newly proposed individual logarithm step of the ICM. Also, the DLP of ephemeral keys used in a popular password key exchange protocol known as Chang and Chang are computed and reported to launch key recovery attack.

Development of Fuzzy Logic Ant Colony Optimization Algorithm for Multivariate Traveling Salesman Problem (다변수 순회 판매원 문제를 위한 퍼지 로직 개미집단 최적화 알고리즘)

  • Byeong-Gil Lee;Kyubeom Jeon;Jonghwan Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.15-22
    • /
    • 2023
  • An Ant Colony Optimization Algorithm(ACO) is one of the frequently used algorithms to solve the Traveling Salesman Problem(TSP). Since the ACO searches for the optimal value by updating the pheromone, it is difficult to consider the distance between the nodes and other variables other than the amount of the pheromone. In this study, fuzzy logic is added to ACO, which can help in making decision with multiple variables. The improved algorithm improves computation complexity and increases computation time when other variables besides distance and pheromone are added. Therefore, using the algorithm improved by the fuzzy logic, it is possible to solve TSP with many variables accurately and quickly. Existing ACO have been applied only to pheromone as a criterion for decision making, and other variables are excluded. However, when applying the fuzzy logic, it is possible to apply the algorithm to various situations because it is easy to judge which way is safe and fast by not only searching for the road but also adding other variables such as accident risk and road congestion. Adding a variable to an existing algorithm, it takes a long time to calculate each corresponding variable. However, when the improved algorithm is used, the result of calculating the fuzzy logic reduces the computation time to obtain the optimum value.

Evolutionary Network Optimization: Hybrid Genetic Algorithms Approach

  • Gen, Mitsuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.195-204
    • /
    • 2003
  • Network optimization is being increasingly important and fundamental issue in the fields such as engineering, computer science, operations research, transportation, telecommunication, decision support systems, manufacturing, and airline scheduling. Networks provide a useful way to modeling real world problems and are extensively used in practice. Many real world applications impose on more complex issues, such as, complex structure, complex constraints, and multiple objects to be handled simultaneously and make the problem intractable to the traditional approaches. Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems. The invited talk introduces a thorough treatment of evolutionary approaches, i.e., hybrid genetic algorithms approach to network optimization problems, such as, fixed charge transportation problem, minimum cost and maximum flow problem, minimum spanning tree problem, multiple project scheduling problems, scheduling problem in FMS.

  • PDF

Modified Genetic Operators for the TSP

  • Soak Sang Moon;Yang Yeon Mo;Lee Hong Girl;Ahn Byung Ha
    • Journal of Navigation and Port Research
    • /
    • v.29 no.2
    • /
    • pp.141-146
    • /
    • 2005
  • For a long time, genetic algorithms have been recognized as a new method to solve difficult and complex problems and the performance of genetic algorithms depends on genetic operators, especially crossover operator. Various problems like the traveling salesman problem, the transportation problem or the job shop problem, in logistics engineering can be modeled as a sequencing problem This paper proposes modified genetic crossover operators to be used at various sequencing problems and uses the traveling salesman problem to be applied to a real world problem like the delivery problem and the vehicle routing problem as a benchmark problem Because the proposed operators use parental information as well as network information, they could show better efficiency in performance and computation time than conventional operators.

A Neural Network Based on Stochastic Computation using the Ratio of the Number of Ones and Zeros in the Pulse Stream (펄스열에서 1인 펄스수와 0인 펄스수의 비를 이용하여 확률연산을 하는 신경회로망)

  • 민승재;채수익
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.7
    • /
    • pp.211-218
    • /
    • 1994
  • Stochastic computation employs random pulse streams to represent numbers. In this paper, we study a new method to implement the number system which uses the ratio of the numbers of ones and zeros in the pulse streams. In this number system. if P is the probability that a pulse is one in a pulse stream then the number X represented by the pulse stream is defined as P/(1-P). We propose circuits to implement the basic operations such as addition multiplication and sigmoid function with this number system and examine the error characteristics of such operations in stochastic computation. We also propose a neuron model and derive a learning algorithm based on backpropagation for the 3-layered feedforward neural networks. We apply this learning algorithm to a digit recognition problem. To analyze the results, we discuss the errors due to the variance of the random pulse streams and the quantization noise of finite length register.

  • PDF

An Application-Level Fault Tolerant System For Synchronous Parallel Computation (동기 병렬연산을 위한 응용수준의 결함 내성 연산시스템)

  • Park, Pil-Seong
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.185-193
    • /
    • 2008
  • An MTBF(mean time between failures) of large scale parallel systems is known to be only an order of several hours, and large computations sometimes result in a waste of huge amount of CPU time, However. the MPI(Message Passing Interface), a de facto standard for message passing parallel programming, suggests no possibility to handle such a problem. In this paper, we propose an application-level fault tolerant computation system, purely on the basis of the current MPI standard without using any non-standard fault tolerant MPI library, that can be used for general scientific synchronous parallel computation.

  • PDF

Multi-stage Inverse Finite Element Analysis of Multi-stage Rectangular Cup Drawing Processes with Large Aspect Ratio Considering Deformation History (변형이력을 고려한 세장비가 큰 직사각컵 성형공정의 다단계 유한요소 역해석)

  • Kim S. H.;Kim S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.94-97
    • /
    • 2001
  • An inverse finite element approach is employed for more capability to design the optimum blank shape from the desired final shape with small amount of computation time and effort. For multi-stage deep-drawing processes, numerical analysis is extremely difficult to carry out due to its complexities and convergence problem as well as tremendous computation time. In this paper, multi-stage finite element inverse analysis is applied to multi-stage rectangular cup drawing processes to calculate intermediate blank shapes and strain distributions in each stages. Deformation history of the previous stage is considered in the computation. Finite element patches are used to describe arbitrary intermediate sliding constraint surfaces.

  • PDF

An Incremental Similarity Computation Method in Agglomerative Hierarchical Clustering

  • Jung, Sung-young;Kim, Taek-soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.579-583
    • /
    • 2001
  • In the area of data clustering in high dimensional space, one of the difficulties is the time-consuming process for computing vector similarities. It becomes worse in the case of the agglomerative algorithm with the group-average link and mean centroid method, because the cluster similarity must be recomputed whenever the cluster center moves after the merging step. As a solution of this problem, we present an incremental method of similarity computation, which substitutes the scalar calculation for the time-consuming calculation of vector similarity with several measures such as the squared distance, inner product, cosine, and minimum variance. Experimental results show that it makes clustering speed significantly fast for very high dimensional data.

  • PDF