• Title/Summary/Keyword: Computation problem

Search Result 1,291, Processing Time 0.028 seconds

Parallel Implementation of A Neural Network Ensemble on the Connection Machine CM-2 (Connection Machine CM-2상에서 신경망군(群)의 병렬 구현)

  • 김대진
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.1
    • /
    • pp.28-41
    • /
    • 1997
  • This paper describes a parallel implementation of a neurla network ensemble developed for object recognition on the connection machine CM-2. The implementation ensures that multiple networks are implemented simultaneously starting from different initial weights and all training samples are applied to each network by one sample per a copy of each network. When compared with a sequential implementation, this accelerates the computation speed by O(N.m.n) where N, m, and n are the network, respectively. The speedup in the computation time and the convergence characteristics of sthe modified backpropagation learning precedure were evaluated by two-dimensional object recognition problem.

  • PDF

A Parallel Computation of Finite Element Analysis on a Transputer System (트랜스퓨터를 이용한 유안영속해석의 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.735-741
    • /
    • 1992
  • This paper presents a parallel algorithm for the finite element analysis using relatively inexpensive transputer parallel system. The substructure method, which is highly parallel in nature, is used to improve the parallel computing efficiency by splitting up the whole structure into substructures. The proposed algorithm is applied to a simple two-dimensional magnetostatic problem. It is found that the more the number of transputer is increased, the more the total computation time is reduced. And the computational efficiency becomes better as the number of internal boundary nodes becomes smaller.

  • PDF

Application of Simulated Annealing and Tabu Search for Loss Minimization in Distribution Systems (베전 계통의 손실 최소화를 위한 시뮬레이티드 어닐링과 타부 탐색의 적용)

  • Jeon, Young-Jae;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.28-37
    • /
    • 2001
  • This paper presents an efficient algorithm for the loss minimization of distribution system by automatic sectionalizing switch operation in large scale distribution systems. Simulated annealing is particularly well suited for large combinational optimization problem, but the use of this algorithm is also responsible for an excessive computation time requirement. Tabu search attempts to determine a better solution in the manner of a greatest-descent algorithm, but it can not give any guarantee for the convergence property. The hybrid algorithm of two methods with two tabu lists and the proposed perturbation mechanism is applied to improve the computation time and convergence property Numerical examples demonstrate the validity and effectiveness of the proposed methodology using a KEPCO's distribution system.

  • PDF

Design of Spatial Clustering Method for Spatial Objects with Polygonometry (다각형 객체를 지원하는 공간 클러스터링 기법의 설계)

  • 황지완;문상호
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.374-377
    • /
    • 2004
  • Existing Clustering Methods for spatial data mining process only point objects, not objects with polygonometry such as lines and areas. It is because that distance computation between objects with polygonomery for clustering is more complex than point objects. To solve this problem, we design a clustering method based on regular grid cell structures. In details, it refutes cost and time for distance computation using cell relationships in grid cell structures.

  • PDF

DOMAIN DECOMPOSITION ALGORITHM AND ANALYTICAL SIMULATION OF COUPLED FLOW IN RESERVOIR / WELL SYSTEM

  • EWING, RICHARD;IBRAGIMOV, AKIF;LAZAROV, RAYCHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.71-99
    • /
    • 2001
  • The model and analytical method for solving the problem of coupled fluid flow in the reservoir/well system is presented. The 3-D drainage area is composed of three connected media: the tubing, the annuli as a super conducting collector, and the reservoir itself. To couple these three types of fluid flows a non-overlapping Dirichlet-Neumann domain decomposition method is developed. The method allows us to apply an analytical hybrid simulator for accurate evaluation of the impact of main geometrical and hydrodynamic parameters of the 3-D system on the pressure drop along the horizontal well and its production index.

  • PDF

A Study on the Alternative Method of Video Characteristics Using Captioning in Text-Video Retrieval Model (텍스트-비디오 검색 모델에서의 캡션을 활용한 비디오 특성 대체 방안 연구)

  • Dong-hun, Lee;Chan, Hur;Hyeyoung, Park;Sang-hyo, Park
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.347-353
    • /
    • 2022
  • In this paper, we propose a method that performs a text-video retrieval model by replacing video properties using captions. In general, the exisiting embedding-based models consist of both joint embedding space construction and the CNN-based video encoding process, which requires a lot of computation in the training as well as the inference process. To overcome this problem, we introduce a video-captioning module to replace the visual property of video with captions generated by the video-captioning module. To be specific, we adopt the caption generator that converts candidate videos into captions in the inference process, thereby enabling direct comparison between the text given as a query and candidate videos without joint embedding space. Through the experiment, the proposed model successfully reduces the amount of computation and inference time by skipping the visual processing process and joint embedding space construction on two benchmark dataset, MSR-VTT and VATEX.

Parallelized Particle Swarm Optimization with GPU for Real-Time Ballistic Target Tracking (실시간 탄도 궤적 목표물 추적을 위한 GPU 기반 병렬적 입자군집최적화 기법)

  • Yunho, Han;Heoncheol, Lee;Hyeokhoon, Gwon;Wonseok, Choi;Bora, Jeong
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.355-365
    • /
    • 2022
  • This paper addresses the problem of real-time tracking a high-speed ballistic target. Particle filters can be considered to overcome the nonlinearity in motion and measurement models in the ballistic target. However, it is difficult to apply particle filters to real-time systems because particle filters generally require much computation time. This paper proposes an accelerated particle filter using graphics processing unit (GPU) for real-time ballistic target tracking. The real-time performance of the proposed method was tested and analyzed on a widely-used embedded system. The comparison results with the conventional particle filter on CPU (central processing unit) showed that the proposed method improved the real-time performance by reducing computation time significantly.

Fast Algorithms for Computing Floating-Point Reciprocal Cube Root Functions

  • Leonid Moroz;Volodymyr Samotyy;Cezary Walczyk
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.6
    • /
    • pp.84-90
    • /
    • 2023
  • In this article the problem of computing floating-point reciprocal cube root functions is considered. Our new algorithms for this task decrease the number of arithmetic operations used for computing $1/{\sqrt[3]{x}}$. A new approach for selection of magic constants is presented in order to minimize the computation time for reciprocal cube roots of arguments with movable decimal point. The underlying theory enables partitioning of the base argument range x∈[1,8) into 3 segments, what in turn increases accuracy of initial function approximation and decreases the number of iterations to one. Three best algorithms were implemented and carefully tested on 32-bit microcontroller with ARM core. Their custom C implementations were favourable compared with the algorithm based on cbrtf(x) function taken from C <math.h> library on three different hardware platforms. As a result, the new fast approximation algorithm for the function $1/{\sqrt[3]{x}}$ was determined that outperforms all other algorithms in terms of computation time and cycle count.

A Study on Aircraft-Target Assignment Problem in Consideration of Deconfliction (최적화와 분할 방법을 이용한 항공기 표적 할당 연구)

  • Lee, Hyuk;Lee, Young Hoon;Kim, Sun Hoon
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • This paper investigates an aircraft-target assignment problem in consideration of deconfliction. The aircraft-target assignment problem is the problem to assign available aircrafts and weapons to targets that should be attacked, where the objective function is to minimize the total expected damage of aircrafts. Deconfliction is the way of dividing airspaces for aircraft flight to ensure the safety while performing the mission. In this paper, mixed integer programming model is suggested, where it considers deconfliction between aircrafts. However, the suggested MIP model is non-linear and limited to get solution for large size problem. The 2-phase decomposition model is suggested for efficiency and computation, where in the first phase target area is divided into sectors for deconfliction and in the second phase aircrafts and weapons are assigned to given targets for minimizing expected damage of aircraft. The proposed decomposition model shows outperforms the model developed for comparison in the computational experiment.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.