• Title/Summary/Keyword: Computation problem

Search Result 1,291, Processing Time 0.037 seconds

Novel Collision Warning System using Neural Networks (신경회로망을 이용한 새로운 충돌 경고 시스템)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyun;Hwang, Jaeho;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.392-397
    • /
    • 2014
  • Recently, there are many researches on active safety system of intelligent vehicle. To reduce the probability of collision caused by driver's inattention and mistakes, the active safety system gives warning or controls the vehicle toward avoiding collision. For the purpose, it is necessary to recognize and analyze circumstances around. In this paper, we will treat the problem about collision risk assessment. In general, it is difficult to calculate the collision risk before it happens. To consider the uncertainty of the situation, Monte Carlo simulation can be employed. However it takes long computation time and is not suitable for practice. In this paper, we apply neural networks to solve this problem. It efficiently computes the unseen data by training the results of Monte Carlo simulation. Furthermore, we propose the features affects the performance of the assessment. The proposed algorithm is verified by applications in various crash scenarios.

Mutual Authentication Mechanism for Secure Group Communications in Sensor Network (센서 네트워크에서의 안전한 그룹통신을 위한 상호 인증 기법)

  • Ko, Hye-Young;Doh, In-Shil;Chae, Ki-Joon
    • The KIPS Transactions:PartC
    • /
    • v.17C no.6
    • /
    • pp.441-450
    • /
    • 2010
  • Recently, a lot of interest is increased in sensor network which gathers various data through many sensor nodes deployed in wired and wireless network environment. However, because of the limitation in memory, computation, and energy of the sensor nodes, security problem is very important issue. In sensor network, not only the security problem, but also computing power should be seriously considered. In this paper, considering these characteristics, we make the sensor network consist of normal sensor nodes and clusterheaders with enough space and computing power, and propose a group key rekeying scheme adopting PCGR(Predistribution and local Collaborationbased Group Rekeying) for secure group communication. In our proposal, we enhance the security by minimizing the risk to safety of the entire network through verifying the new key value from clusterheader by sensor nodes. That is, to update the group keys, clusterheaders confirm sensor nodes through verifying the information from sensor nodes and send the new group keys back to authentic member nodes. The group keys sent back by the clusterheaders are verified again by sensor nodes. Through this mutual authentication, we can check if clusterheaders are compromised or not. Qualnet simulation result shows that our scheme not only guarantees secure group key rekeying but also decreasesstorage and communication overhead.

Analysis of Impact of Correlation Between Hardware Configuration and Branch Handling Methods Executing General Purpose Applications (범용 응용프로그램 실행 시 하드웨어 구성과 분기 처리 기법에 따른 GPU 성능 분석)

  • Choi, Hong Jun;Kim, Cheol Hong
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.3
    • /
    • pp.9-21
    • /
    • 2013
  • Due to increased computing power and flexibility of GPU, recent GPUs execute general purpose parallel applications as well as graphics applications. Programmers can use GPGPU by using the APIs from GPU vendors. Unfortunately, computational resources of GPU are not fully utilized when executing general purpose applications because of frequent branch instructions. To handle the branch problem, several warp formations have been proposed. Intuitively, we expect that the warp formations providing higher computational resource utilization show higher performance. Contrary to our expectations, according to simulation results, the performance of the warp formation providing better utilization is lower than that of the warp formation providing worse utilization. This is because warp formation providing high utilization causes serious memory bottleneck due to increased memory request. Therefore, warp formation providing high computation utilization cannot guarantee high performance without proper hardware resources. For this reason, we will analyze the correlation between hardware configuration and warp formation. Our simulation results present the guideline to solve the underutilization problem due to branch instructions when designing recent GPU.

A Tree-structured XPath Query Reduction Scheme for Enhancing XML Query Processing Performance (XML 질의의 수행성능 향상을 위한 트리 구조 XPath 질의의 축약 기법에 관한 연구)

  • Lee, Min-Soo;Kim, Yun-Mi;Song, Soo-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.585-596
    • /
    • 2007
  • XML data generally consists of a hierarchical tree-structure which is reflected in mechanisms to store and retrieve XML data. Therefore, when storing XML data in the database, the hierarchical relationships among the XML elements are taken into consideration during the restructuring and storing of the XML data. Also, in order to support the search queries from the user, a mechanism is needed to compute the hierarchical relationship between the element structures specified by the query. The structural join operation is one solution to this problem, and is an efficient computation method for hierarchical relationships in an in database based on the node numbering scheme. However, in order to process a tree structured XML query which contains a complex nested hierarchical relationship it still needs to carry out multiple structural joins and results in another problem of having a high query execution cost. Therefore, in this paper we provide a preprocessing mechanism for effectively reducing the cost of multiple nested structural joins by applying the concept of equivalence classes and suggest a query path reduction algorithm to shorten the path query which consists of a regular expression. The mechanism is especially devised to reduce path queries containing branch nodes. The experimental results show that the proposed algorithm can reduce the time requited for processing the path queries to 1/3 of the original execution time.

Review on the Three-Dimensional Inversion of Magnetotelluric Date (MT 자료의 3차원 역산 개관)

  • Kim Hee Joon;Nam Myung Jin;Han Nuree;Choi Jihyang;Lee Tae Jong;Song Yoonho;Suh Jung Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.3
    • /
    • pp.207-212
    • /
    • 2004
  • This article reviews recent developments in three-dimensional (3-D) magntotelluric (MT) imaging. The inversion of MT data is fundamentally ill-posed, and therefore the resultant solution is non-unique. A regularizing scheme must be involved to reduce the non-uniqueness while retaining certain a priori information in the solution. The standard approach to nonlinear inversion in geophysis has been the Gauss-Newton method, which solves a sequence of linearized inverse problems. When running to convergence, the algorithm minimizes an objective function over the space of models and in the sense produces an optimal solution of the inverse problem. The general usefulness of iterative, linearized inversion algorithms, however is greatly limited in 3-D MT applications by the requirement of computing the Jacobian(partial derivative, sensitivity) matrix of the forward problem. The difficulty may be relaxed using conjugate gradients(CG) methods. A linear CG technique is used to solve each step of Gauss-Newton iterations incompletely, while the method of nonlinear CG is applied directly to the minimization of the objective function. These CG techniques replace computation of jacobian matrix and solution of a large linear system with computations equivalent to only three forward problems per inversion iteration. Consequently, the algorithms are efficient in computational speed and memory requirement, making 3-D inversion feasible.

A Numerical Method for Nonlinear Wave-Making Phenomena (비선형 조파현상의 수치해법)

  • Jang-Whan Kim;Kwang-June Bai
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 1993
  • A numerical method for nonlinear free-surface-wave problem is developed in this paper. The final goal of this study is to simulate the towing tank experiment of a ship model and to partially replace the experiment by the numerical model. The exact problem in the scope of potential flow theory is formulated by a variational principle based on the classical Hamilton's principle. A localized finite element method is used in the present numerical computations which made use of the following two notable steps. The first step is an efficient treatment of the numerical radiation condition by using the intermediate nonlinear-to-linear transition buffer subdomain between the fully nonlinear and linear subdomains. The second is the use of a modal analysis in the final stage of the solution procedures, which enables us to reduce the computation time drastically. With these improvements the present method can treat a much larger computational domain than that was possible previously. A pressure patch on the free surface was chosen as an example. From the present computed results we could investigate the effect of nonlinearity on the down-stream wave pattern more clearly than others, because much larger computational domain was treated. We found, specifically, the widening of the Kelvin angle and the increase of the wave numbers and the magnitude of wave profiles.

  • PDF

Comparison of the Mathematics Educational Values between Pre-service and In-service Elementary School Teachers (수학교육적 가치에 대한 예비 초등교사와 현직 초등교사의 인식 비교)

  • Yim, MinJae;Cho, SooYun;Pang, JeongSuk
    • Communications of Mathematical Education
    • /
    • v.34 no.3
    • /
    • pp.277-297
    • /
    • 2020
  • The purpose of this study was to identify and compare the mathematics educational values of pre-service and in-service elementary school teachers. For this purpose, we implemented a questionnaire investigating mathematics educational values and used principal component analysis which resulted in six components. These components were named as fun, problem-solving, representation, computation, ability, and explanation through systematic labeling processes. Both pre-service and in-service elementary school teachers considered problem-solving the most important and there was no statistical difference between the teacher groups. They also considered fun the least important and in-service elementary school teachers regarded it more important than pre-service counterparts did. All value components except explanation were regarded as important by in-service elementary school teachers, fourth-year pre-service teachers, and first-year pre-service teachers in order. The result of noticeable differences between pre-service and in-service elementary school teachers implies that actual teaching experience may affect teachers' mathematics educational values more than teacher preparation programs. Based on these findings, we need to discuss what should be regarded as important and worthwhile in teacher preparation programs to establish mathematics educational values for pre-service teachers. We also need to confirm whether the mathematics educational values by in-service elementary school teachers may be in line with what has been pursued in the national mathematics curriculum.

Spatial Locality Preservation Metric for Constructing Histogram Sequences (히스토그램 시퀀스 구성을 위한 공간 지역성 보존 척도)

  • Lee, Jeonggon;Kim, Bum-Soo;Moon, Yang-Sae;Choi, Mi-Jung
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.79-91
    • /
    • 2013
  • This paper proposes a systematic methodology that could be used to decide which one shows the best performance among space filling curves (SFCs) in applying lower-dimensional transformations to histogram sequences. A histogram sequence represents a time-series converted from an image by the given SFC. Due to the high-dimensionality nature, histogram sequences are very difficult to be stored and searched in their original form. To solve this problem, we generally use lower-dimensional transformations, which produce lower bounds among high dimensional sequences, but the tightness of those lower-bounds is highly affected by the types of SFC. In this paper, we attack a challenging problem of evaluating which SFC shows the better performance when we apply the lower-dimensional transformation to histogram sequences. For this, we first present a concept of spatial locality, which comes from an intuition of "if the entries are adjacent in a histogram sequence, their corresponding cells should also be adjacent in its original image." We also propose spatial locality preservation metric (slpm in short) that quantitatively evaluates spatial locality and present its formal computation method. We then evaluate five SFCs from the perspective of slpm and verify that this evaluation result concurs with the performance evaluation of lower-dimensional transformations in real image matching. Finally, we perform k-NN (k-nearest neighbors) search based on lower-dimensional transformations and validate accuracy of the proposed slpm by providing that the Hilbert-order with the highest slpm also shows the best performance in k-NN search.

Clustering of Web Objects with Similar Popularity Trends (유사한 인기도 추세를 갖는 웹 객체들의 클러스터링)

  • Loh, Woong-Kee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.485-494
    • /
    • 2008
  • Huge amounts of various web items such as keywords, images, and web pages are being made widely available on the Web. The popularities of such web items continuously change over time, and mining temporal patterns in popularities of web items is an important problem that is useful for several web applications. For example, the temporal patterns in popularities of search keywords help web search enterprises predict future popular keywords, enabling them to make price decisions when marketing search keywords to advertisers. However, presence of millions of web items makes it difficult to scale up previous techniques for this problem. This paper proposes an efficient method for mining temporal patterns in popularities of web items. We treat the popularities of web items as time-series, and propose gapmeasure to quantify the similarity between the popularities of two web items. To reduce the computation overhead for this measure, an efficient method using the Fast Fourier Transform (FFT) is presented. We assume that the popularities of web items are not necessarily following any probabilistic distribution or periodic. For finding clusters of web items with similar popularity trends, we propose to use a density-based clustering algorithm based on the gap measure. Our experiments using the popularity trends of search keywords obtained from the Google Trends web site illustrate the scalability and usefulness of the proposed approach in real-world applications.

Beacon Node Based Localization Algorithm Using Received Signal Strength(RSS) and Path Loss Calibration for Wireless Sensor Networks (무선 센서 네트워크에서 수신신호세기와 전력손실지수 추정을 활용하는 비콘 노드 기반의 위치 추정 기법)

  • Kang, Hyung-Seo;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • In the range-based localization, the localization accuracy will be high dependent on the accuracy of distance measurement between two nodes. The received signal strength(RSS) is one of the simplest methods of distance measurement, and can be easily implemented in a ranging-based method. However, a RSS-based localization scheme has few problems. One problem is that the signal in the communication channel is affected by many factors such as fading, shadowing, obstacle, and etc, which makes the error of distance measurement occur and the localization accuracy of sensor node be low. The other problem is that the sensor node estimates its location for itself in most cases of the RSS-based localization schemes, which makes the sensor network life time be reduced due to the battery limit of sensor nodes. Since beacon nodes usually have more resources than sensor nodes in terms of computation ability and battery, the beacon node based localization scheme can expand the life time of the sensor network. In this paper, therefore we propose a beacon node based localization algorithm using received signal strength(RSS) and path loss calibration in order to overcome the aforementioned problems. Through simulations, we prove the efficiency of the proposed scheme.