• Title/Summary/Keyword: Computation load

Search Result 472, Processing Time 0.03 seconds

Hydraulic Computation and Stress Analysis of Box Culvert (암거의 수리 및 응력계산)

  • 함준호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.14 no.1
    • /
    • pp.2557-2569
    • /
    • 1972
  • Hydraulic computations to determine the elevation of canal bottom and mater surface for box type concrete culverts are discussed. Velocity and cross sectional area of flow are computed from Manning's formula. Aad then head loss and velocity head are considered to determine the elevation of bottom and water surface. For stress analysis, 13.5 ton live load and earth pressure are considered. Also longitudinal stress of box culverts is checked.

  • PDF

Sequential LS Algorithms for Smart Antennas (스마트안테나용 S-LS 알고리즘)

  • Park, Jaedon;Tuan, Le-Minh;Giwan Yoon;Kim, Jewoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.341-344
    • /
    • 2001
  • We propose a novel method to simplify the computational load of ILSP algorithm for CDMA environment. Since this method processes the block matrix by a vector sequentially, the complex matrix computation ran be avoided. The performance of the algorithm is verified by computer simulations.

  • PDF

Elastic solutions due to a time-harmonic point load in isotropic multi-layered media

  • Lin, Gao;Zhang, Pengchong;Liu, Jun;Wang, Wenyuan
    • Structural Engineering and Mechanics
    • /
    • v.57 no.2
    • /
    • pp.327-355
    • /
    • 2016
  • A new analytical derivation of the elastodynamic point load solutions for an isotropic multi-layered half-space is presented by means of the precise integration method (PIM) and the approach of dual vector. The time-harmonic external load is prescribed either on the external boundary or in the interior of the solid medium. Starting with the axisymmetric governing motion equations in a cylindrical coordinate system, a second order ordinary differential matrix equation can be gained by making use of the Hankel integral transform. Employing the technique of dual vector, the second order ordinary differential matrix equation can be simplified into a first-order one. The approach of PIM is implemented to obtain the solutions of the ordinary differential matrix equation in the Hankel integral transform domain. The PIM is a highly accurate algorithm to solve sets of first-order ordinary differential equations and any desired accuracy of the dynamic point load solutions can be achieved. The numerical simulation is based on algebraic matrix operation. As a result, the computational effort is reduced to a great extent and the computation is unconditionally stable. Selected numerical trials are given to validate the accuracy and applicability of the proposed approach. More examples are discussed to portray the dependence of the load-displacement response on the isotropic parameters of the multi-layered media, the depth of external load and the frequency of excitation.

LCA Based Environmental Load Estimation Model for Road Drainage Work Using Available Information in the Initial Design Stage (초기 설계단계의 가용정보를 활용한 도로 배수공종의 LCA기반 환경부하량 산정모델)

  • Park, Jin-Young;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.3
    • /
    • pp.70-78
    • /
    • 2018
  • Due to the increasing concern about climate change, efforts to reduce environmental load are continuously being made in construction industry, and life cycle assessment (LCA) is being presented as an effective method to assess environmental load. Since LCA requires information on construction quantity used for environmental load estimation, however, it is not being utilized in the environmental review at the initial design stage where it is difficult to obtain such information. In this study, a construction quantity computation system based on the standard section was developed for the drainage facilities of the road and utilized in the model to calculate the environmental load. This model can estimate the environmental load by calculating the amount of resources required for LCA using only the information available at the initial design stage. To verify the validity of the model, five validation cases were applied and compared with the unit estimation model and the multiple regression analysis model. As a result, it is confirmed that the mean absolute error rate is 9.94%, which is relatively accurate and effective model in the initial design stage.

Real-Time License Plate Detection in High-Resolution Videos Using Fastest Available Cascade Classifier and Core Patterns

  • Han, Byung-Gil;Lee, Jong Taek;Lim, Kil-Taek;Chung, Yunsu
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.251-261
    • /
    • 2015
  • We present a novel method for real-time automatic license plate detection in high-resolution videos. Although there have been extensive studies of license plate detection since the 1970s, the suggested approaches resulting from such studies have difficulties in processing high-resolution imagery in real-time. Herein, we propose a novel cascade structure, the fastest classifier available, by rejecting false positives most efficiently. Furthermore, we train the classifier using the core patterns of various types of license plates, improving both the computation load and the accuracy of license plate detection. To show its superiority, our approach is compared with other state-of-the-art approaches. In addition, we collected 20,000 images including license plates from real traffic scenes for comprehensive experiments. The results show that our proposed approach significantly reduces the computational load in comparison to the other state-of-the-art approaches, with comparable performance accuracy.

Numerical Computation of the Stress Itensity Factor of A Cracked Viscoelastic Body Under the Impact Load (충격하중을 받는 점탄성 균열의 응력확대계수 계산)

  • Lee Sung-Hee;Sim Woo-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1583-1589
    • /
    • 2004
  • In this paper, A new finite element method for the time domain analysis of the dynamic stress intensity factor of two-dimensional viscoelastic body with a stationary central crack under the transient dynamic load is presented, which is based on the intergrodifferential equations of motion in the isotropic linear viscoelasticity and the Galerkin's method. The vlscoelastic material is assumed to be elastic in dilatation and behaves like a standard linear solid in shear. As a numerical example, the Chen's problem in viscoelastodynamic version is solved for the parametric study about the effect of viscosity and relaxation time on the dynamic stress intensity factor.

Emergency Service Restoration and Load Balancing in Distribution Networks Using Feeder Loadings Balance Index (피더부하 균등화지수를 이용한 배전계통의 긴급정전복구 및 부하균등화)

  • Choe, Sang-Yeol;Jeong, Ho-Seong;Sin, Myeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.217-224
    • /
    • 2002
  • This paper presents an algorithm to obtain an approximate optimal solution for the service restoration and load balancing of large scale radial distribution system in a real-time operation environment. Since the problem is formulated as a combinatorial optimization problem, it is difficult to solve a large-scale combinatorial optimization problem accurately within the reasonable computation time. Therefore, in order to find an approximate optimal solution quickly, the authors proposed an algorithm which combines optimization technique called cyclic best-first search with heuristic based feeder loadings balance index for computational efficiency and robust performance. To demonstrate the validity of the proposed algorithm, numerical calculations are carried out the KEPCO's 108 bus distribution system.

Design of a micro fluid actuator driven by electromagnetic force (전자기력을 이용한 마이크로 유체구동기의 설계)

  • Kim D.H.;Kim K.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1988-1991
    • /
    • 2005
  • A micro fluid actuator driven by electromagnetic force at MEMS(Micro Electro Mechanical System) level has been designed. The operation of the actuator was simulated in three steps. First, fluid flow analysis has been performed to determine the actuator load. With the load, dynamic behavior of the actuator structure has been analysed. Finally, fluid-structure interaction analysis has been performed to predict the performance of the actuator. To avoid excessive amount of computation, axisymmetric and plane strain 2-D models were used.

  • PDF

Computation of Spring Constants of MEMS Socket Pins by Theoretical Analysis (이론분석에 의한 MEMS 소켓 핀의 스프링 상수 계산)

  • Bae, Kyoo-Sik;Ho, Kwang-Il
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.592-596
    • /
    • 2008
  • Spring constants (displacement per unit applied load) of MEMS socket pins of given structures were computed by theoretical analysis and confirmed by the finite element method (FEM). In the theoretical analysis, the displacement of pins was calculated based on the 2-dimensional bending theory of the curved beam. For the 3-dimensional modeling, CATIA was used. After modeling, the raw data were transferred to ANSYS, which was employed in the 3-dimensional analysis for the calculation of the stress and strain and loaddisplacement The theoretical analysis and the FEM results were found to agree, with each showing the spring constants as 63.4 N/m within a reasonable load range. These results show that spring constants can be easily obtained through theoretical calculation without resorting to experiments and FEM analysis for simple and symmetric structures. For the some change of shape and structural stiffness, this theoretical analysis can be applied to MEMS socket pins.

Applications of Strain Gages to Farm Machine Elements (농업기계 요소의 스트레인 게이지 응용에 관한 연구)

  • 류관희;정창주;고학균;최재갑;유수남
    • Journal of Biosystems Engineering
    • /
    • v.5 no.2
    • /
    • pp.40-57
    • /
    • 1980
  • The aim of this study was to promote extensive use of strain gage for accurate measurement in the area of farm machinery research. The results are summarized as follows. 1. Although many strain gate transducers commercially available such as load-cells , accelerometers and pressure transducers have been used in the area of farm machinery research, many types of transducers had to be developed due to the inadaptability or high cost commercial transducers, in many instances. 2. A strain -gaged cantilever beam could be used as a good educational material to demonstrate the methods of Wheatstone bridge arrangement, calibration and theoreticval computation. A ring type load-cell and shaft torque transducer also could be used for the same purpose. 3. The torque and angular speed transducers for an auto-feed thresher and the displacement and pressure transducers for a rice whitener were made and gave satisfactory results. 4. Based on the above results, it is possible to develop simple and low-cost transducers to measure displacement, angular speed , torque and pressure of farm machine elements.

  • PDF