• Title/Summary/Keyword: Computation cost

Search Result 647, Processing Time 0.023 seconds

REAL-TIME COLLISION RESPONSE BETWEEN CLOTH AND SPHERE OBJECT IN UNITY (유니티 게임 엔진에서의 구형 물체와 천 시뮬레이션간의 실시간 충돌 및 반응 처리 연구)

  • Kim, Min Sang;Song, Wook;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • As the performance of computer hardware has been increased in recent years, more realistic computer generated objects can be created and presented in personal computers and portable digital devices as well. For this reason, digital contents, including computer graphics, require virtual objects that are more realistic and representable in real-time on various devices, thus it requires more computational costs. In order to support the production of contents including computer graphics, games, and animations on multi-platform, Unity or unreal engines are mainly used. To represent more realistic behavior of virtual objects in a simulation, a virtual object must collide with other virtual objects and present the plausible interaction, as in the real world. However, such dynamic simulation requires a large amount of computational cost, and most portable devices cannot provide these dynamic simulations in real-time. In this paper, we proposed a GPGPU computation based dynamic cloth simulation to represent collision and response with spherical object in real-time. We believe that the proposed method can be useful for readily producing realistic digital contents.

A vibration based acoustic wave propagation technique for assessment of crack and corrosion induced damage in concrete structures

  • Kundu, Rahul Dev;Sasmal, Saptarshi
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.599-610
    • /
    • 2021
  • Early detection of small concrete crack or reinforcement corrosion is necessary for Structural Health Monitoring (SHM). Global vibration based methods are advantageous over local methods because of simple equipment installation and cost efficiency. Among vibration based techniques, FRF based methods are preferred over modal based methods. In this study, a new coupled method using frequency response function (FRF) and proper orthogonal modes (POM) is proposed by using the dynamic characteristic of a damaged beam. For the numerical simulation, wave finite element (WFE), coupled with traditional finite element (FE) method is used for effectively incorporating the damage related information and faster computation. As reported in literature, hybrid combination of wave function based wave finite element method and shape function based finite element method can addresses the mid frequency modelling difficulty as it utilises the advantages of both the methods. It also reduces the dynamic matrix dimension. The algorithms are implemented on a three-dimensional reinforced concrete beam. Damage is modelled and studied for two scenarios, i.e., crack in concrete and rebar corrosion. Single and multiple damage locations with different damage length are also considered. The proposed methodology is found to be very sensitive to both single- and multiple- damage while being computationally efficient at the same time. It is observed that the detection of damage due to corrosion is more challenging than that of concrete crack. The similarity index obtained from the damage parameters shows that it can be a very effective indicator for appropriately indicating initiation of damage in concrete structure in the form of spread corrosion or invisible crack.

Real-time Moving Object Detection Based on RPCA via GD for FMCW Radar

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.103-114
    • /
    • 2019
  • Moving-target detection using frequency-modulated continuous-wave (FMCW) radar systems has recently attracted attention. Detection tasks are more challenging with noise resulting from signals reflected from strong static objects or small moving objects(clutter) within radar range. Robust Principal Component Analysis (RPCA) approach for FMCW radar to detect moving objects in noisy environments is employed in this paper. In detail, compensation and calibration are first applied to raw input signals. Then, RPCA via Gradient Descents (RPCA-GD) is adopted to model the low-rank noisy background. A novel update algorithm for RPCA is proposed to reduce the computation cost. Finally, moving-targets are localized using an Automatic Multiscale-based Peak Detection (AMPD) method. All processing steps are based on a sliding window approach. The proposed scheme shows impressive results in both processing time and accuracy in comparison to other RPCA-based approaches on various experimental scenarios.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

A Heuristic for Service-Parts Lot-Sizing with Disassembly Option (분해옵션 포함 서비스부품 로트사이징 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon;Lee, Dong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.24-35
    • /
    • 2021
  • Due to increasing awareness on the treatment of end-of-use/life products, disassembly has been a fast-growing research area of interest for many researchers over recent decades. This paper introduces a novel lot-sizing problem that has not been studied in the literature, which is the service-parts lot-sizing with disassembly option. The disassembly option implies that the demands of service parts can be fulfilled by newly manufactured parts, but also by disassembled parts. The disassembled parts are the ones recovered after the disassembly of end-of-use/life products. The objective of the considered problem is to maximize the total profit, i.e., the revenue of selling the service parts minus the total cost of the fixed setup, production, disassembly, inventory holding, and disposal over a planning horizon. This paper proves that the single-period version of the considered problem is NP-hard and suggests a heuristic by combining a simulated annealing algorithm and a linear-programming relaxation. Computational experiment results show that the heuristic generates near-optimal solutions within reasonable computation time, which implies that the heuristic is a viable optimization tool for the service parts inventory management. In addition, sensitivity analyses indicate that deciding an appropriate price of disassembled parts and an appropriate collection amount of EOLs are very important for sustainable service parts systems.

A Study on Integrity Protection of Edge Computing Application Based on Container Technology (컨테이너 기술을 활용한 엣지 컴퓨팅 환경 어플리케이션 무결성 보호에 대한 연구)

  • Lee, Changhoon;Shin, Youngjoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1205-1214
    • /
    • 2021
  • Edge Computing is used as a solution to the cost problem and transmission delay problem caused by network bandwidth consumption that occurs when IoT/CPS devices are integrated into the cloud by performing artificial intelligence (AI) in an environment close to the data source. Since edge computing runs on devices that provide high-performance computation and network connectivity located in the real world, it is necessary to consider application integrity so that it is not exploited by cyber terrorism that can cause human and material damage. In this paper, we propose a technique to protect the integrity of edge computing applications implemented in a script language that is vulnerable to tampering, such as Python, which is used for implementing artificial intelligence, as container images and then digitally signed. The proposed method is based on the integrity protection technology (Docker Contents Trust) provided by the open source container technology. The Docker Client was modified and used to utilize the whitelist for container signature information so that only containers allowed on edge computing devices can be operated.

Privacy-preserving and Communication-efficient Convolutional Neural Network Prediction Framework in Mobile Cloud Computing

  • Bai, Yanan;Feng, Yong;Wu, Wenyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4345-4363
    • /
    • 2021
  • Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.

Investigating Structural Stability and Constructability of Buildings Relative to the Lap Splice Position of Reinforcing Bars

  • Widjaja, Daniel Darma;Rachmawati, Titi Sari Nurul;Kwon, Keehoon;Kim, Sunkuk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.315-326
    • /
    • 2023
  • The design principles and implementation of rebar lap splice in architectural structures are governed by building regulations. Nevertheless, the minimization of rebar-cutting waste (RCW) is often impeded by the mandatory requirements pertaining to the rebar lapping zone as prescribed in design codes. In real-world construction scenarios, compliance with these rules often falls short due to hurdles concerning productivity, quality, safety, time, and cost. This discrepancy between code stipulations and on-the-ground construction practices necessitates an academic exploration. The goal of this research was to delve into the effect of rebar lap splice placement on the robustness and constructability of building edifices. The study initially took on a review of the computation of rebar lapping length and the rules revolving around the lapping zone. Following this, a structural robustness and constructability examination was undertaken, focusing on adherence to the lap splice zone. The interpretations and deductions of the research led to the following insights: (1) the efficacy of rebar lap splice is not solely contingent on the moment, and (2) the implementation of rebar lap splice beyond the specified zone can match the structural integrity and robustness of those confined within the designated area. As a result, the constraints on the rebar lapping zone ought to be revisited and possibly relaxed. The conclusions drawn from this research are anticipated to reconcile the disconnect between building codes and practical construction conditions, furnishing invaluable academic substantiation to further the endeavor of achieving near-zero RCW.

Nakdong River Estuary Salinity Prediction Using Machine Learning Methods (머신러닝 기법을 활용한 낙동강 하구 염분농도 예측)

  • Lee, Hojun;Jo, Mingyu;Chun, Sejin;Han, Jungkyu
    • Smart Media Journal
    • /
    • v.11 no.2
    • /
    • pp.31-38
    • /
    • 2022
  • Promptly predicting changes in the salinity in rivers is an important task to predict the damage to agriculture and ecosystems caused by salinity infiltration and to establish disaster prevention measures. Because machine learning(ML) methods show much less computation cost than physics-based hydraulic models, they can predict the river salinity in a relatively short time. Due to shorter training time, ML methods have been studied as a complementary technique to physics-based hydraulic model. Many studies on salinity prediction based on machine learning have been studied actively around the world, but there are few studies in South Korea. With a massive number of datasets available publicly, we evaluated the performance of various kinds of machine learning techniques that predict the salinity of the Nakdong River Estuary Basin. As a result, LightGBM algorithm shows average 0.37 in RMSE as prediction performance and 2-20 times faster learning speed than other algorithms. This indicates that machine learning techniques can be applied to predict the salinity of rivers in Korea.

Convergence study of traditional 2D/1D coupling method for k-eigenvalue neutron transport problems with Fourier analysis

  • Boran Kong ;Kaijie Zhu ;Han Zhang ;Chen Hao ;Jiong Guo ;Fu Li
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1350-1364
    • /
    • 2023
  • 2D/1D coupling method is an important neutron transport calculation method due to its high accuracy and relatively low computation cost. However, 2D/1D coupling method may diverge especially in small axial mesh size. To analyze the convergence behavior of 2D/1D coupling method, a Fourier analysis for k-eigenvalue neutron transport problems is implemented. The analysis results present the divergence problem of 2D/1D coupling method in small axial mesh size. Several common attempts are made to solve the divergence problem, which are to increase the number of inner iterations of the 2D or 1D calculation, and two times 1D calculations per outer iteration. However, these attempts only could improve the convergence rate but cannot deal with the divergence problem of 2D/1D coupling method thoroughly. Moreover, the choice of axial solvers, such as DGFEM SN and traditional SN, and its effect on the convergence behavior are also discussed. The results show that the choice of axial solver is a key point for the convergence of 2D/1D method. The DGFEM SN based 2D/1D method could converge within a wide range of optical thickness region, which is superior to that of traditional SN method.