
Journal of Internet Computing and Services(JICS) 2018. Dec.: 19(6): 53-62 53

유니티 게임 엔진에서의 구형 물체와 천 시뮬레이션간의
실시간 충돌 및 반응 처리 연구

☆

REAL-TIME COLLISION RESPONSE BETWEEN CLOTH AND
SPHERE OBJECT IN UNITY

김 민 상1 송 욱2 최 유 주3 홍 민4*

Min Sang Kim Wook Song Yoo-Joo Choi Min Hong

요 약

최근 컴퓨터 하드웨어의 성능이 증가함에 따라, 휴대용 전자 기기 뿐만 아니라 개인 컴퓨터에서도 더 사실적인 컴퓨터 그래픽

물체들을 생성하고 보여줄 수 있게 되었다. 이러한 이유로, 컴퓨터 그래픽을 포함한 디지털 콘텐츠는 더 계산적 비용이 높은 사실적

인 가상의 물체들을 다양한 기기에서 실시간으로 표현하는 것을 요구한다. 멀티-플랫폼에서 구동되며 컴퓨터 그래픽을 포함한 게임,

애니메이션 등의 콘텐츠의 제작을 돕기 위해서는 유니티와 언리얼 엔진과 같은 기술들이 주로 사용된다. 시뮬레이션에서 더 사실적

인 가상의 물체의 움직임을 표현하기 위해서는, 가상의 물체는 다른 물체들과 충돌해야 하며 현실세계와 비슷한 반응을 보여야 한다.

하지만, 다이나믹 시뮬레이션은 많은 계산 비용을 요구하나, 대부분의 휴대용 기기들을 이러한 다이나믹 시뮬레이션을 실시간으로
제공하지 못한다. 본 논문에서는 GPGPU 계산을 이용하여 구형 물체와 실시간으로 충돌 및 반응을 수행하는 천 시뮬레이션을 제안한

다. 제안된 방법이 사실적인 디지털 콘텐츠에 유용할 것으로 기대된다.

☞ 주제어 : 천 시뮬레이션, GPGPU. 유니티, 다이나믹 시뮬레이션, 충돌 반응

ABSTRACT

As the performance of computer hardware has been increased in recent years, more realistic computer generated objects can

be created and presented in personal computers and portable digital devices as well. For this reason, digital contents, including

computer graphics, require virtual objects that are more realistic and representable in real-time on various devices, thus it requires more

computational costs. In order to support the production of contents including computer graphics, games, and animations on

multi-platform, Unity or unreal engines are mainly used. To represent more realistic behavior of virtual objects in a simulation, a virtual

object must collide with other virtual objects and present the plausible interaction, as in the real world. However, such dynamic

simulation requires a large amount of computational cost, and most portable devices cannot provide these dynamic simulations in

real-time. In this paper, we proposed a GPGPU computation based dynamic cloth simulation to represent collision and response with

spherical object in real-time. We believe that the proposed method can be useful for readily producing realistic digital contents

☞ keyword : Cloth simulation, GPGPU, Unity, Dynamic simulation, Collision-response

1,2 Department of Computer Science, Soonchunhyang University,
Asan, 31538, South Korea

3 Department of Newmedia, Seoul Media Institute of Technology,
Seoul, 03925, South Korea

4 Department of Computer Software Engineering, Soonchunhyang
University, Asan, 31538, South Korea

* corresponding author (mhong@sch.ac.kr)
[Received 27 August 2018, Reviewed 6 Septebmer 2018, Accepted
2 October 2018]
☆ This work was supported by the National Research Foundation

of Korea(NRF) grant funded by the Korea government(Ministry
of Science, ICT & Future Planning) (No. 2017R1A2B1005207).

☆ A preliminary version of this paper was presented at APIC-IST

1. Introduction

Recently, as the optimization and integration of

semiconductors have been improved, the performance of

general digital devices has been increased dramatically, and

the rate of improvement of processing speed of floating

point, which is especially critical factor for expressing

computer graphics, is improved at a remarkable rate. With

the development of such computer hardware, personal

2017 and was selected as an outstanding paper.

J. Internet Comput. Serv.
ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www.jics.or.kr
Copyright ⓒ 2018 KSII

http://dx.doi.org/10.7472/jksii.2018.19.6.53

Real-time Collision Response Between Cloth and Sphere Object in Unity

54 2018. 12

computers (PCs) and portable digital devices including smart

phones have gained the ability to express the realistic

computer graphics in real-time. Figure 1 compares the

processing speed improvement between the GPU and the x86

CPU of NVIDIA, a typical GPU maker [1].

(Figure 1) The Comparing Amount of Performance

Between x86 CPU and NVIDIA’s GPU

Along with the higher levels of computer hardware,

computer graphics are evolving based on realistic

representations that can interact with users in real-time on a

variety of digital devices, including smart devices. In order

to provide the same digital contents on various devices, there

is a method of producing by programming for each platform

and development using a multi-platform contents

development tool which provides conversion to various

platforms. In most cases, the latter is being used to develop

the digital contents because of economic reasons and ease of

maintenance [2]. Unity is the most representative

multi-platform content development tool for most digital

contents, including games, animations, and computer

graphics, and it supports most digital devices, including

smart devices.

The existing rigid-based computer graphics method has

clear limitations on expressions such as cloth or deformable

objects, so that most of these virtual bjects in the real world

are represented unrealistically. In general, digital contents

should include dynamic simulations involving a variety of

deformable objects, fabrics, and the like. However, this

dynamic simulation requires a large amount of computational

cost for expressing virtual objects and requires additional

computational burden to calculate the interaction with other

objects in real-time. In addition, for most smart devices, this

real-time dynamic simulation cannot be provided due to

performance limitations. In general, dynamic simulation

expresses an object in reality as a connection of particles

containing discrete masses. The computation between each

particle can be processed in parallel, and this parallel

processing technique can provide real-time simulation even

on mobile devices which have relatively low computational

performance [3]. In this paper, we propose a method to

perform various interactions between virtual cloth and

spherical object in real- time using GPGPU in Unity, a multi

- platform contents development tool.

2. Mass Spring System

Cloth simulation used in this paper is implemented in

mass-spring structure. The mass-spring system is a traditional

and simple method of expressing a deformable object using

a point having a mass and a spring connecting the points,

and can quickly present a deformable object in a computer

simulation [4]. There are three types of spring in mass-spring

system. Each spring type is as follows: a rectangular shaped

structural spring that connects the adjacent mass-points on the

top, bottom, left, and right sides of the cloth, a shear spring

connecting the mass-points located diagonally, and bend spring

that represents the resistance of the cloth when the mass-point

is connected. Figure 2 shows the type of each spring [5].

(Figure 2) Types of Springs Used in Mass Spring

System

In the mass-spring system, externally applied forces are

propagated through these springs and transmits forces to each

connected mass-point by stretching and shrinking. At this

moment the force F applied to a spring can be calculated by

equation (1) where the position of connected two mass-points

are pi and pj , spring constant is K, and the initial length of

the spring is l. In this paper, we applied a simple square

model for cloth simulation.

Real-time Collision Response Between Cloth and Sphere Object in Unity

한국 인터넷 정보학회 (19권6호) 55

  ∥  ∥∥  ∥
  

 (1)

3. Unity Engine

We use the Unity engine, which is a game engine that

provides multi-platform conversion to apply the proposed

cloth simulation to various hardware and operating system

platforms. The Unity Engine is an integrated authoring tool

for creating interactive contents such as 3D and 2D video

games or architectural visualizations, with the highest share

of the game engine market [6]. Figure 3 shows the market

share of the game engine in the first quarter of 2016 and

Unity engine has a market share of 34%. Unity Engine has

the highest market share among single game engines [7].

Unity engine can hierarchically manage each game object

displayed on the screen, and can add functions to each game

object using javascript or script written in C # to control

them.

(Figure 3) 2016 Q1 Game Engine Market Share

3.1 Compute Shader in Unity

General-Purpose computing on Graphics Processing Units

(GPGPU) was used to obtain the performance gain through

the GPU for the parallel calculation of each mass-point on

the mass-spring. GPGPU is a method to calculate outside the

graphics pipeline area using the GPU. GPGPU cannot be

recursively implemented, and its flow control performance is

lower than that of the CPU, and the performance per core is

somewhat lower than that of the CPU. However, since the

number of processors is larger than that of the CPU and they

provide the parallel computing for calculation, they perform

higher throughput than the CPU [8, 9]. In this paper,

compute shader is applied to use GPGPU in Unity game

engine.

Compute shaders in Unity are supported on computer

hardware that supports shader model 5.0 or higher, or on

platforms that support OpenGL 4.3 or higher, and are written

in the High Level Shader Language (HLSL) language [10].

The compute shader is called from within a script written in

the C # language, and is called in units of a three-dimensional

thread group that corresponds to the parameter value passed

in the call. Each thread group is internally made up of

three-dimensional threads. In this paper, a thread group of

size 16 x 16 x 1 is used in a configuration of 2 x 2 x 1

[11]. In this paper, the resolution of the cloth model used in

the experiment is fixed to 32 * 32, which is considered by

each thread to correspond to the mass-point of the cloth

model. This is shown in Figure 4.

(Figure 4) Thread Construction in Compute Shader

4. Fourth Order Runge-Kutta

In this paper, the numerical integration is used to estimate

the next state of velocity and position of discrete mass-points

inside cloth model. To obtain a solution closer to the actual

value, we used the fourth order Runge-Kutta method in this

paper [12]. The fourth order Runge-Kutta has high accuracy

among the numerical integration methods, but has a

relatively high computational cost due to many computation

steps. When there exists a differentiable curve   

Real-time Collision Response Between Cloth and Sphere Object in Unity

56 2018. 12

representing the mass-point velocity in the mass spring

system, the fourth order Runge-Kutta method is calculated as

follows. First, the value of the acceleration a0 at t¬0 is

obtained as shown in equation (2).

    (2)

Using a0, the value of acceleration a1 at t½ is obtained

as shown in equation (3).

   


 


  (3)

Using the obtained a1, the acceleration a2 at t½ is

obtained as shown in equation (4).

   


 


  (4)

a2 is used to obtain the acceleration a3 at t1 as shown in

equation (5).

        (5)

The final velocity of next time step can be obtained by

summation of weight multiplied a0, a1, a2, a3 added to

current time step's velocity.

      


        (6)

The above process is repeated for every frame to estimate

the velocity and position to obtain the next state of position

for the mass-point for each frame.

5. Collision-Response in

Simulation

5.1 Collision Detection

In dynamic simulation, which is performed in real-time,

virtual objects are required to compute the collision detection

with other game objects and corresponding response should

be reflected for realistic representation. In order to deal with

the most basic collision model in 3D space, we have

performed the collision between cloth and sphere type virtual

object expressed in mass-spring structure in this paper. This

collision-response update is performed after calculating the

mass-point of the current frame from the mass-point in the

previous frame, and before it is rendered. Since the

mass-spring system in this paper is computed for each

mass-point inside the GPU, we simply use the distance d

between the mass-point and the sphere object to be collided

with, and the radius r of the sphere object the collision

processing operation can be performed simply. Figure 5

shows the pseudocode for simple collision detection.

(Figure 5) Pseudocode : Collision Detection with

Sphere object

GPU-based shader programs have poor performance when

they include branching operations such as pseudocode [13].

However, parallel execution is performed inside the compute

shader because it has the performance advantage of offsetting

it. After determining the collision through the above

computation, the next collision response makes appropriate

changes to each mass-point to enable natural interaction.

5.2 Collision Response

It is necessary to be recalculated the position of each

Real-time Collision Response Between Cloth and Sphere Object in Unity

한국 인터넷 정보학회 (19권6호) 57

mass-point which is collided with the sphere object through

the collision detection described above. In this paper, we

applied two types of collision-response calculation methods

and compare them. In the first traditional method, when the

mass-point collides with the sphere, the velocity vector of the

mass-point in the current frame is reflected on the spherical

surface. The method of obtaining the reflection vector can be

obtained as equation (7). As shown in Figure 6, the vector

n applied in the formula to obtain the reflection vector is

used by normalizing the vector from the center of the sphere

to the mass-point located inside the sphere. In this case, it

is assumed that the value of the delta time used in the

numerical integration is sufficiently small that the position of

the penetrating mass-point does not exceed the range of the

hemisphere toward the position in the previous time step.

    ∙  (7)

(Figure 6) Image of Vector Reflected by Sphere’s

Surface

The second method uses the ray-sphere collision to

change the position of the mass-point. Since the coordinates

of the mass-point at the moment of collision detection are

located inside or on the surface of the sphere object, cast the

ray from the position at the previous time step of the

mass-point in the reverse direction of the velocity vector.

Then move the position of the mass-point of the current time

step to the point where the ray touches the spherical surface.

This method also reflects a velocity vector on the spherical

surface and it can be expressed as shown in Figure 7.

The coordinates of mass-point on the sphere surface

satisfy the equation of the sphere and the equation of the

straight line represented by the velocity vector, so it can be

expressed as equation (8)and it can be expanded to obtain the

(Figure 7) Velocity as Ray Casted on Sphere Object

quadratic equation (9), simplified as        .

             

     

 (8)

                

              

 
  

  
   

(9)

Applying a quadratic formula to the quadratic equation

found in (9), we can find the time t until the moment the

mass-point touches the surface of the sphere object from the

previous frame. Since these calculations are made within the

collision response branch after the collision detection

operation is performed, the case where the solution of the

quadratic equation does not exist is not considered.

















±
















 
 

 
 

(10)

Since the two values t0 and t1 obtained through equation

(10) must be positive. For the minimum errors as possible,

the value of equation (11) is used for the calculation when

the sign of equation (11) is positive, and value of equation

(12) is used when the sign of equation (11) is negative.

          
















 
 

 
 

(11)

Real-time Collision Response Between Cloth and Sphere Object in Unity

58 2018. 12


















         

 
 

 
 

(12)

In this case, the surface of conflicting sphere object can

penetrate the cloth because it is calculated for discontinuous

mass-points. Therefore, we apply the offset value to the

radius as shown in Figure 8 in the process of applying the

collision response for more robust and realistic

representation. The offset value can be obtained from

equation (13).

(Figure 8) Radius Offset Calculated with Length of

Structural Spring

  



 



    (13)

Offset values must be calculated in pre-processing step,

since the obtained offset must be applied to the

collision-detection step in order to not pushing back

mass-points position a lot. The radius offset was applied to

the both suggested collision-response method. Since the

radius offset values are mass-point resolution dependent,

denser cloth model will represent more precise results.

6. Experiment

Experimental tests are performed under the computing

environment as shown in Table 1. The parameters of the

cloth simulation are set as shown in Table 2.

In the simulation, only the two nodes located at both ends

of one side of the cloth are fixed, and the simulation starts

with 90 degrees rotated about the Z axis. Therefore, at the

beginning of the simulation, the cloth model collides with the

sphere object after it has fallen. The sphere object performs

the reciprocating motion of the unit length back and forth

with respect to the center of the cloth, and the velocity is

slowly decelerated using the lerp function.

(Table 1) Environment SW and HW Specification of PC

Component Specification

Operating

System
Windows 10.0.16299.19

Unity 5.6.2f1 Personal

CPU Intel(R) Core(TM) i5-4460

RAM
Samsung DDR3 PC3-12800

16GB

Mainboard ASUSTeK H97M-E

Graphics Card NVIDIA GeForce GTX 1070

VRAM GDDR5 8GB

(Table 2) Parameters of Cloth Simulation

Parameter Value

Cloth Size in Unity unit 1m x 1m

Cloth Mass 512

Spring Constant 35,000

Damping Constant 100

Cloth Mesh Resolution 32 x 32

Size of Thread group 16 x 16 x 1

Numbers of Thread group 2 x 2 x 1

Gravity Constant -9.80665

Time Step 0.000005 per frame

Numbers of Spring 3,906

6.1 Collision-Response Experiments in

Cloth Simulation

Two experimental tests are performed in this paper and

thy are as follows.

Real-time Collision Response Between Cloth and Sphere Object in Unity

한국 인터넷 정보학회 (19권6호) 59

1. Comparison of the two proposed methods for the static

sphere object after the collision-reaction

2. Comparison of two proposed methods for moving

sphere object after collision-reaction

3. Comparing the performance between two proposed

methods

4. Comparing the performance of second method

implemented with CPU and GPU

First, the collision-response results between the static

sphere object and the cloth were checked to compare the

natural movement of the cloth and the phenomenon that the

sphere surface penetrates through the cloth model’s surface.

Table 3 are snapshots of the 150, 500, and 800 frames in the

simulation.

(Table 3) Performed Simulation with Static Sphere

Object

Frame

number
First method Second method

150

500

800

In the first simple collision-response method, the face of

the cloth model is penetrated in all three moments when the

cloth falls on the simulation and touches the sphere object.

On the other hand, the second proposed method shows that

the face of the sphere object does not penetrate at all three

moments.

Table 4 compares the movements of the cloth model with

moving virtual sphere object. In the 200 frame, the first time

the cloth model collides with the sphere object, the second

time the cloth model collides with the sphere object at 1,300

frame, and the third collision occurs at 3,100 frame. Frame

200 is captured from the back face of cloth model, because

at that moment, back face shows the difference of two

collision-response method more clearly.

(Table 4) Performed Simulation with Moving Sphere

Object

Frame

number
First method Second method

150

500

800

In the case of a collision with a moving virtual sphere

object, the edge of cloth is folded by the sphere object in the

case of the first method in the 200 frame, while in the

second method, the cloth model naturally surrounds the

virtual sphere object. In the case of 1,300 frame and 3,100

frame, the first method is that the scale of velocity of the

mass-point is not large enough so that the mass-point does

not move sufficiently and the virtual sphere object penetrates

the cloth model.

After comparing the visual performance, we compared the

performance between two proposed methods. In this paper,

Real-time Collision Response Between Cloth and Sphere Object in Unity

60 2018. 12

the performances were measured by averaging elapsed time

between every 200 frames. The measurement was performed

10 times for each method.

(Figure 9) Performance Comparison between First

Method and Second method

Since both methods show over 350 frames per second, we

checked the benefit of GPGPU used in our implementation

in Unity. In this comparison, the second proposed method

was used, one calculate collision-response with GPGPU and

the other with only CPU.

(Figure 10) Performance Comparison between CPU

and GPU with Proposed Second Method

6.2 Experiment Result Analysis

Since the virtual sphere object in the cloth simulation has

a discrete position value at every time step, a moment when

a high velocity sphere penetrates the surface of the cloth may

occur. Thus, the second method of moving the coordinates of

the mass-point on the mass-spring structure to the sphere

surface is better than expected to achieve a more natural and

plausible results. And because the first method only changes

the velocity vector, the sphere object penetrates the cloth

when the cloth stops or moves at a slow speed. In addition,

the penetration does not occur in a low-resolution cloth

model as it is used in experimental tests due to the effect of

radius offset applied to collision-response.

In the first performance comparison, second method

seems to be somewhat slower than first method, but still over

350 frames per second, so the both methods will be available

on real-time simulations. In Figure 10, the first measured

frames per second shows lower than other time because of

the generating compute buffers and all initializations.

From the second performance comparison test, the

implementation with GPGPU shows 60% faster than

CPU-only calculations. Despite the second proposed method

includes conditional branches and heavy calculations, the

benefit of parallelism is bigger than cons as shown in Figure

10.

6. Conclusion

Recently, as the performance of computer hardware

increases, it becomes possible to drive realistic and natural

computer graphics on various devices. However, the behavior

of objects that should be computed by dynamic simulation

such as cloth collides with other objects on the simulation is

difficult to be presented on the performance limit of the

mobile hardware platform. Therefore, this paper proposed a

more natural collision response method in the case of a

mass-spring-based cloth simulation, and compared and

analyzed them separately.

The result of moving the position of the mass-point at the

collision-detected time step on the spherical surface is more

natural than the method of reflecting only the velocity vector

in the collision with the sphere object in the mass-spring

structure. Based on this research, it is expected that it will

be useful for the development of a cloth object which shows

natural and plausible motion in real-time on digital contents

targeting various hardware platforms.

References

[1] Rommel Garcia, "GPU: The Beast In Data Centers",

2017 [Internet]

https://www.slideshare.net/RommelGarcia2/gpu-101-t

https://www.slideshare.net/RommelGarcia2/gpu-101-the-beast-in-data-centers

Real-time Collision Response Between Cloth and Sphere Object in Unity

한국 인터넷 정보학회 (19권6호) 61

he-beast-in-data-centers

[2] Hartmann, Gustavo, Geoff Stead, and Asi DeGani.

"Cross-platform mobile development." Mobile

Learning Environment, Cambridge 16.9 (2011):

158-171.

[3] Cheng, H. (2009). Interactive Cloth Simulation.

Science (pp. 1–8).

[4] Xavier provot, “Deformation Constraints in a Mass

-Spring Model to Describe Rigid Cloth Behavior”,

Graphics Interface, pp.147-155, 1995.

[5] O’Connor, Corey, and Keith Stevens. "Modeling

cloth using mass spring systems." Appl. Soft.

Comput 12 (2003): 266-273.

[6] Unity, “Products”, [Internet] https://unity3d.com/unity

[7] Unity, "Company Facts", 2017 [Internet]

https://unity3d.com/kr/public-relations

[8] Owens, J. D., Luebke, D., Govindaraju, N., Harris,

M., Krüger, J., Lefohn, A. E., & Purcell, T. J.

(2007, March). A survey of general‐purpose

computation on graphics hardware. In Computer

graphics forum (Vol. 26, No. 1, pp. 80-113).

Blackwell Publishing Ltd.

[9] Boyd, Chas. "The DirectX 11 compute shader."

ACM SIGGRAPH. Cité page 25 (2008).

[10] Unity Documentation, “Compute Shader”, 2017,

https://docs.unity3d.com/Manual/ComputeShaders.html

[11] MSDN, “numthreads”, [INTERNET]

https://msdn.microsoft.com/en-us/library/windows/des

ktop/ff471442(v=vs.85).aspx

[12] Davis, Philip J., and Philip Rabinowitz, “Methods of

numerical integration,” Courier Corporation, 2007.

[13] Owens, J. D., Houston, M., Luebke, D., Green, S.,

Stone, J. E., & Phillips, J. C. (2008). GPU

computing. Proceedings of the IEEE, 96(5), 879-899.

Real-time Collision Response Between Cloth and Sphere Object in Unity

62 2018. 12

◐ 저 자 소 개 ◑

김 민 상(Min Sang Kim)

2017년 순천향대학교 컴퓨터소프트웨어공학과(공학사)

2018년~현재 순천향대학교 대학원 컴퓨터학과(공학석사)

관심분야 : 컴퓨터 그래픽스, 물리 기반 시뮬레이션, 안드로이드 애플리케이션
E-mail : ben399399@sch.ac.kr

송 욱(Wook Song)

2016년 순천향대학교 컴퓨터소프트웨어공학과(공학사)

2018년 순천향대학교 대학원 컴퓨터학과(공학석사)

관심분야 : Virtual Reality, Augmented Reality, Rehabilitation Contents

E-mail : wook2735@sch.ac.kr

최 유 주(Yoo-Joo Choi)

1989년 이화여대 전자계산학과(이학사)

1991년 이화여대 전자계산학과(이학석사)

2005년 이화여대 컴퓨터공학과(공학박사)

1991년 (주)한국컴퓨터 기술연구소 주임연구원
1994년 (주)포스데이타 기술연구소 주임연구원
2005년 서울벤처정보대학원 컴퓨터응용기술학과 조교수
2010년~현재 서울미디어대학원대학교 뉴미디어학부 부교수
2015년~현재 서울미디어대학원대학교 실감미디어연구소 교수
관심분야 : Computer Graphics, Computer Vision, HCI, Augmented Reality

E-mail : yjchoi@smit.ac.kr

홍 민(Min Hong)

1995년 순천향대학교 전산학과 학사(공학사)

2001년 University of Colorado at Boulder., U.S.A., Computer Science(공학석사)

2005년 University of Colorado at Denver., U.S.A., Ph.D in Bio Informatics(공학박사)

2006년～Present 순천향대학교 컴퓨터소프트웨어공학과 교수
관심분야 : Computer Graphics, Dynamic Simulation, Bio Informatics, Computer Vision

E-mail : mhong@sch.ac.kr

