J. Internet Comput. Serv.

ISSN 1598-0170 (Print) / ISSN 2287-1136 (Online)
http://www._jics.or kr

Copyright (© 2018 KSlI

FUE) AY AR T8 Aot A A Ede|)
AARE FE B AE A

REAL-TIME COLLISION RESPONSE BETWEEN CLOTH AND
SPHERE OBJECT IN UNITY

7 5 92 4§ % F
Min Sang Kim Wook Song Yoo-Joo Choi Min Hong

o
i

12

A3 AFE SEslole] Aol ZAhgel wel FHle A 17 wak ohjel A ARHAAE B A AFY 299
BASL QYL BolZ + A AT ol @ o2 AFE 1D £ID A TR o ANE ugo] B A

9 7Hde) BASS ke 7171010 AAOR BHeks AL 27ATh WE-EA BN TEHE AFY TP e TR A,
Ao 5ol BAE ARG §7] AL FUESE A2 AA% B A1ESol F2 AL AFHIRAIA B 434
R bge] #4129 KRS AL, IS HAE e BARE FEAL S BAAASL S WS wolok Bek

AT, tholute) Aol Ae BE A4 &S aFeh), RRY FUE A5 oleld Toluy AFHelNE FAoR
AFHA RHT B =R GPORU AAE ol &3kl 78 st A 2 FE 2 0SS FASE A AR A AN
o A wde) AHAY TAY EHEel 488 A0 sl

= FAo] ¢ A AlEH A, GPCPU. FUE], trelud AlEE oA, FE vk

ABSTRACT

As the performance of computer hardware has been increased in recent years, more redlistic computer generated objects can
be created and presented in personal computers and portable digital devices as well. For this reason, digital contfents, including
computer graphics, require virtual objects that are more redlistic and representable in real-time on various devices, thus it requires more
computational costs. In order to support the production of contents including computer graphics, games, and animations on
mulfi-plafform, Unity or unreal engines are mainly used. To represent more redlistic behavior of virtual objects in a simulatfion, a virtual
object must collide with other virtual objects and present the plausible interaction, as in the real world. However, such dynamic
simulation requires a large amount of computational cost, and most portable devices cannot provide these dynamic simulations in
real-fime. In this paper, we proposed a GPGPU computation based dynamic cloth simulation to represent collision and response with

spherical object in real-time. We believe that the proposed method can be useful for readily producing redlistic digital contents

= keyword : Cloth simulation, GPGPU, Unity, Dynamic simulation, Collision-response

1. Introduction

1,2 Department of Computer Science, Soonchunhyang University,
Asan, 31538, South Korea . .
3 Department of Newmedia, Seoul Media Institute of Technology, semiconductors have been improved, the performance of
Seoul, 03925, South Korea general digital devices has been increased dramatically, and
4 Department of Computer Software Engineering, Soonchunhyang
University, Asan, 31538, South Korea
* corresponding author (mhong@sch.ac.kr) point, which is especially critical factor for expressing
[Received 27 August 2018, Reviewed 6 Septebmer 2018, Accepted computer graphics, is improved at a remarkable rate. With
2 October 2018]
v¢ This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(Ministry
of Science, ICT & Future Planning) (No. 2017R1A2B1005207).
v¢ A preliminary version of this paper was presented at APIC-IST 2017 and was selected as an outstanding paper.

Recently, as the optimization and integration of

the rate of improvement of processing speed of floating

the development of such computer hardware, personal

Journal of Internet Computing and Services(JICS) 2018. Dec.: 19(6): 53-62 53
http://dx.doi.org/10.7472/jksii.2018.19.6.53

Real-time Collision Response Between Cloth and Sphere Object in Unity

computers (PCs) and portable digital devices including smart
phones have gained the ability to express the realistic
computer graphics in real-time. Figure 1 compares the
processing speed improvement between the GPU and the x86
CPU of NVIDIA, a typical GPU maker [1].

MOORE'S LAW
Intel co-founder Gordon Moore in 1965

TFLOPS ~S—NVIDIAGPU =86 CPU

- 40
35

e 30
2 25

w08 200 2012 2014 206

(Figure 1) The Comparing Amount of Performance
Between x86 CPU and NVIDIA's GPU

Along with the higher levels of computer hardware,
computer graphics are evolving based on realistic
representations that can interact with users in real-time on a
variety of digital devices, including smart devices. In order
to provide the same digital contents on various devices, there
is a method of producing by programming for each platform
and development wusing a multi-platform contents
development tool which provides conversion to various
platforms. In most cases, the latter is being used to develop
the digital contents because of economic reasons and ease of
maintenance [2]. Unity is the most representative
multi-platform content development tool for most digital
contents, including games, animations, and computer
graphics, and it supports most digital devices, including
smart devices.

The existing rigid-based computer graphics method has
clear limitations on expressions such as cloth or deformable
objects, so that most of these virtual bjects in the real world
are represented unrealistically. In general, digital contents
should include dynamic simulations involving a variety of
deformable objects, fabrics, and the like. However, this
dynamic simulation requires a large amount of computational
cost for expressing virtual objects and requires additional
computational burden to calculate the interaction with other
objects in real-time. In addition, for most smart devices, this
real-time dynamic simulation cannot be provided due to
performance limitations. In general, dynamic simulation

expresses an object in reality as a connection of particles
containing discrete masses. The computation between each
particle can be processed in parallel, and this parallel
processing technique can provide real-time simulation even
on mobile devices which have relatively low computational
performance [3]. In this paper, we propose a method to
perform various interactions between virtual cloth and
spherical object in real- time using GPGPU in Unity, a multi
- platform contents development tool.

2. Mass Spring System

Cloth simulation used in this paper is implemented in
mass-spring structure. The mass-spring system is a traditional
and simple method of expressing a deformable object using
a point having a mass and a spring connecting the points,
and can quickly present a deformable object in a computer
simulation [4]. There are three types of spring in mass-spring
system. Each spring type is as follows: a rectangular shaped
structural spring that connects the adjacent mass-points on the
top, bottom, left, and right sides of the cloth, a shear spring
connecting the mass-points located diagonally, and bend spring
that represents the resistance of the cloth when the mass-point
is connected. Figure 2 shows the type of each spring [5].

~—— Bend Springs

Structural
Springs
= Sheer Springs

(Figure 2) Types of Springs Used in Mass Spring
System

In the mass-spring system, externally applied forces are
propagated through these springs and transmits forces to each
connected mass-point by stretching and shrinking. At this
moment the force F applied to a spring can be calculated by
equation (1) where the position of connected two mass-points
are pi and pj , spring constant is K, and the initial length of
the spring is 1. In this paper, we applied a simple square
model for cloth simulation.

54

2018. 12

Real-time Collision Response Between Cloth and Sphere Object in Unity

Pt p;

(€]
I pi+p; |

F= K1~ | p;+p;)

3. Unity Engine

We use the Unity engine, which is a game engine that
provides multi-platform conversion to apply the proposed
cloth simulation to various hardware and operating system
platforms. The Unity Engine is an integrated authoring tool
for creating interactive contents such as 3D and 2D video
games or architectural visualizations, with the highest share
of the game engine market [6]. Figure 3 shows the market
share of the game engine in the first quarter of 2016 and
Unity engine has a market share of 34%. Unity Engine has
the highest market share among single game engines [7].
Unity engine can hierarchically manage each game object
displayed on the screen, and can add functions to each game
object using javascript or script written in C # to control
them.

In-house Unity Cocos2D Corona Unreal Marmalade Other

(Figure 3) 2016 Q1 Game Engine Market Share

3.1 Compute Shader in Unity

General-Purpose computing on Graphics Processing Units
(GPGPU) was used to obtain the performance gain through
the GPU for the parallel calculation of each mass-point on
the mass-spring. GPGPU is a method to calculate outside the
graphics pipeline area using the GPU. GPGPU cannot be
recursively implemented, and its flow control performance is
lower than that of the CPU, and the performance per core is
somewhat lower than that of the CPU. However, since the
number of processors is larger than that of the CPU and they
provide the parallel computing for calculation, they perform

higher throughput than the CPU [8, 9]. In this paper,
compute shader is applied to use GPGPU in Unity game
engine.

Compute shaders in Unity are supported on computer
hardware that supports shader model 5.0 or higher, or on
platforms that support OpenGL 4.3 or higher, and are written
in the High Level Shader Language (HLSL) language [10].
The compute shader is called from within a script written in
the C # language, and is called in units of a three-dimensional
thread group that corresponds to the parameter value passed
in the call. Each thread group is internally made up of
three-dimensional threads. In this paper, a thread group of
size 16 x 16 x 1 is used in a configuration of 2 x 2 x 1
[11]. In this paper, the resolution of the cloth model used in
the experiment is fixed to 32 * 32, which is considered by
each thread to correspond to the mass-point of the cloth
model. This is shown in Figure 4.

Thread Group ID

0,00 i1.0.0)

S)

(0,1,0) {1.1.0) \\
read ID \
(0,0,0 (1,000 (150,00
0,1.0) (1,1,00 (15,1,0)
{0,150} {1,150 {15,15,0)

(Figure 4) Thread Construction in Compute Shader
4. Fourth Order Runge-Kutta

In this paper, the numerical integration is used to estimate
the next state of velocity and position of discrete mass-points
inside cloth model. To obtain a solution closer to the actual
value, we used the fourth order Runge-Kutta method in this
paper [12]. The fourth order Runge-Kutta has high accuracy
among the numerical integration methods, but has a
relatively high computational cost due to many computation

steps. When there exists a differentiable curve y = f (x)

el

b= QIE{Hl HE S| (19763)

55

Real-time Collision Response Between Cloth and Sphere Object in Unity

representing the mass-point velocity in the mass spring
system, the fourth order Runge-Kutta method is calculated as
follows. First, the value of the acceleration a0 at t—0 is
obtained as shown in equation (2).

ay = AtF(z,,y,))

Using a0, the value of acceleration al at t# is obtained
as shown in equation (3).

a; = AtF(ZU,, + ﬁvyn, + %

5 a) 3

Using the obtained al, the acceleration a2 at t: is
obtained as shown in equation (4).

Gy = AtF(mn—&—%,yn—!-%al) @

a2 is used to obtain the acceleration a3 at t1 as shown in
equation (5).

ay = AtF(z, + At,y, + Ata,))

The final velocity of next time step can be obtained by
summation of weight multiplied a0, al, a2, a3 added to
current time step’s velocity.

1
Ynt1 = Yn T EAt(ao + 2ay +2a, + a3) ©)

The above process is repeated for every frame to estimate
the velocity and position to obtain the next state of position
for the mass-point for each frame.

5. Collision-Response in
Simulation

5.1 Collision Detection

In dynamic simulation, which is performed in real-time,
virtual objects are required to compute the collision detection

with other game objects and corresponding response should
be reflected for realistic representation. In order to deal with
the most basic collision model in 3D space, we have
performed the collision between cloth and sphere type virtual
object expressed in mass-spring structure in this paper. This
collision-response update is performed after calculating the
mass-point of the current frame from the mass-point in the
previous frame, and before it is rendered. Since the
mass-spring system in this paper is computed for each
mass-point inside the GPU, we simply use the distance d
between the mass-point and the sphere object to be collided
with, and the radius r of the sphere object the collision
processing operation can be performed simply. Figure 5
shows the pseudocode for simple collision detection.

1 Begin

2 distance = sqrt(pow((masspoint.x-sphere.x),2)

+pow((masspoint.y-sphere.y),2)

+pow((masspoint.z-sphere.z),2))

3 if(radius>distance)

4 return true
5 else

6 return false
7 End

(Figure 5) Pseudocode : Collision Detection with
Sphere object

GPU-based shader programs have poor performance when
they include branching operations such as pseudocode [13].
However, parallel execution is performed inside the compute
shader because it has the performance advantage of offsetting
it. After determining the collision through the above
computation, the next collision response makes appropriate
changes to each mass-point to enable natural interaction.

5.2 Collision Response

It is necessary to be recalculated the position of each

56

2018. 12

Real-time Collision Response Between Cloth and Sphere Object in Unity

mass-point which is collided with the sphere object through
the collision detection described above. In this paper, we
applied two types of collision-response calculation methods
and compare them. In the first traditional method, when the
mass-point collides with the sphere, the velocity vector of the
mass-point in the current frame is reflected on the spherical
surface. The method of obtaining the reflection vector can be
obtained as equation (7). As shown in Figure 6, the vector
n applied in the formula to obtain the reflection vector is
used by normalizing the vector from the center of the sphere
to the mass-point located inside the sphere. In this case, it
is assumed that the value of the delta time used in the
numerical integration is sufficiently small that the position of
the penetrating mass-point does not exceed the range of the
hemisphere toward the position in the previous time step.

R=1-2(N+)N @)

R : Reflection vector

AR, : Normal of surface
’: position of previous time step

p: position of current time step

I : Incident vector

(Figure 6) Image of Vector Reflected by Sphere’s
Surface

The second method uses the ray-sphere collision to
change the position of the mass-point. Since the coordinates
of the mass-point at the moment of collision detection are
located inside or on the surface of the sphere object, cast the
ray from the position at the previous time step of the
mass-point in the reverse direction of the velocity vector.
Then move the position of the mass-point of the current time
step to the point where the ray touches the spherical surface.
This method also reflects a velocity vector on the spherical
surface and it can be expressed as shown in Figure 7.

The coordinates of mass-point on the sphere surface
satisfy the equation of the sphere and the equation of the
straight line represented by the velocity vector, so it can be

p:mass point’s position of previous frame

p”: recalculated mass-point’s position of current frame

s: center position of sphere object

v: velocity vector

p’: calculated mass-point’s position of current frame

(Figure 7) Velocity as Ray Casted on Sphere Object
quadratic equation (9), simplified as A >+ 2B+ C'=0.

(<p:1: + tpd.’l,‘) — Sz >2 + ((py + tpd,y> - Sy)2 +
((pz + tp(lz) - 52)2
®
(pr _5.7:)2 + (pg_sy)2 + (pz_82)2 _7‘2 +
2t (p(l.’l,‘ (p.'I: — Sz) +pd,y (py - Sy) +p(lz (pz - Sz)> +
t* (P + 0y + Pi2) =0
©

Applying a quadratic formula to the quadratic equation
found in (9), we can find the time t until the moment the
mass-point touches the surface of the sphere object from the
previous frame. Since these calculations are made within the
collision response branch after the collision detection
operation is performed, the case where the solution of the
quadratic equation does not exist is not considered.

toty =—t(p,, (0, —s,)+p,, (0, —s,) T, (p, —5,))) £
\/(t ((ps, (0, —5,)+ P4, (B, —5,) +p4. (. —5.)))
—t*(py, +pj, T 15

(10)

Since the two values t0 and t1 obtained through equation
(10) must be positive. For the minimum errors as possible,
the value of equation (11) is used for the calculation when
the sign of equation (11) is positive, and value of equation
(12) is used when the sign of equation (11) is negative.

ty =—t((py, (p, —5,) + 14, (0, —5,) +1,.(p, —5,))) —
\/(t (94, (0, —5,)+ 14, (p, —5,) +p,. (p, —5.))))?

—t* (g7, +p, tPh.)

expressed as equation (8)and it can be expanded to obtain the (11)
eh= QY HE5t3| (19H6) 57

Real-time Collision Response Between Cloth and Sphere Object in Unity

ty =—t((pg, (0, —5,) + 14, (0, —5,)+p,. (0, —5.))) +

\/(t((pdm (p, —s,) +p4, (py —sy) +p,. (p, —5.)))?
_t2 <p4211' +pt2lil/ +p4212)

12)

In this case, the surface of conflicting sphere object can
penetrate the cloth because it is calculated for discontinuous
mass-points. Therefore, we apply the offset value to the
radius as shown in Figure 8 in the process of applying the
collision response for more robust and realistic
representation. The offset value can be obtained from
equation (13).

E : Penetration Error

R : radius of sphere object

(Figure 8) Radius Offset Calculated with Length of
Structural Spring

2
0= (%) +R*-R (13)

Offset values must be calculated in pre-processing step,
since the obtained offset must be applied to the
collision-detection step in order to not pushing back
mass-points position a lot. The radius offset was applied to
the both suggested collision-response method. Since the
radius offset values are mass-point resolution dependent,
denser cloth model will represent more precise results.

6. Experiment

Experimental tests are performed under the computing
environment as shown in Table 1. The parameters of the

cloth simulation are set as shown in Table 2.

In the simulation, only the two nodes located at both ends
of one side of the cloth are fixed, and the simulation starts
with 90 degrees rotated about the Z axis. Therefore, at the
beginning of the simulation, the cloth model collides with the
sphere object after it has fallen. The sphere object performs
the reciprocating motion of the unit length back and forth
with respect to the center of the cloth, and the velocity is
slowly decelerated using the lerp function.

(Table 1) Environment SW and HW Specification of PC

Component Specification

i
Operating Windows ~ 10.0.16299.19

System
Unity 5.6.2f1 Personal
CPU Intel(R) Core(TM) 5-4460
Samsung DDR3 PC3-12800
RAM
16GB

Mainboard ASUSTeK H97TM-E
Graphics Card NVIDIA GeForce GTX 1070
VRAM GDDR5 8GB

(Table 2) Parameters of Cloth Simulation

Parameter Value

Cloth Size in Unity unit Im x Im
Cloth Mass 512

Spring Constant 35,000
Damping Constant 100

Cloth Mesh Resolution 32 x 32
Size of Thread group 16 x 16 x 1
Numbers of Thread group 2x2x1
Gravity Constant -9.80665
Time Step 0.000005 per frame
Numbers of Spring 3,906

6.1 Collision-Response Experiments in
Cloth Simulation

Two experimental tests are performed in this paper and

thy are as follows.

58

2018. 12

Real-time Collision Response Between Cloth and Sphere Object in Unity

1. Comparison of the two proposed methods for the static
sphere object after the collision-reaction

2. Comparison of two proposed methods for moving
sphere object after collision-reaction

3. Comparing the performance between two proposed
methods

4. Comparing the performance of second method
implemented with CPU and GPU

First, the collision-response results between the static
sphere object and the cloth were checked to compare the
natural movement of the cloth and the phenomenon that the
sphere surface penetrates through the cloth model’s surface.
Table 3 are snapshots of the 150, 500, and 800 frames in the
simulation.

(Table 3) Performed Simulation with Static Sphere

Object
Frame
First method Second method
number
150

-
o
-

In the first simple collision-response method, the face of
the cloth model is penetrated in all three moments when the
cloth falls on the simulation and touches the sphere object.
On the other hand, the second proposed method shows that
the face of the sphere object does not penetrate at all three

moments.

Table 4 compares the movements of the cloth model with
moving virtual sphere object. In the 200 frame, the first time
the cloth model collides with the sphere object, the second
time the cloth model collides with the sphere object at 1,300
frame, and the third collision occurs at 3,100 frame. Frame
200 is captured from the back face of cloth model, because
at that moment, back face shows the difference of two
collision-response method more clearly.

(Table 4) Performed Simulation with Moving Sphere

Object
Frame
First method Second method
number
|

150 H

500 I

800 l

In the case of a collision with a moving virtual sphere
object, the edge of cloth is folded by the sphere object in the
case of the first method in the 200 frame, while in the
second method, the cloth model naturally surrounds the
virtual sphere object. In the case of 1,300 frame and 3,100
frame, the first method is that the scale of velocity of the
mass-point is not large enough so that the mass-point does
not move sufficiently and the virtual sphere object penetrates
the cloth model.

After comparing the visual performance, we compared the
performance between two proposed methods. In this paper,

et QlE{Hl HEt3| (19763)

59

Real-time Collision Response Between Cloth and Sphere Object in Unity

the performances were measured by averaging elapsed time
between every 200 frames. The measurement was performed
10 times for each method.

a0 3952036 394.8476

3003407 300581 5 390335
388.7421 3889855 389288
7621 880589 283835008
hasor B csre oty PELsa2 Es2on 2605 M gano
50
220 3367751
4767
20 |
s e

(Figure 9) Performance Companson between First
Method and Second method

Since both methods show over 350 frames per second, we
checked the benefit of GPGPU used in our implementation
in Unity. In this comparison, the second proposed method
was used, one calculate collision-response with GPGPU and
the other with only CPU.

67627 3911897 3706520 3794798 3809162 IBLSAT2 IBLSL 3826085 308449 38501 08

0 304767
w0 el . W 2373 2012708 2012788 2417 220058 23601
‘))))) ‘ ‘ ‘ ‘ ‘ ‘ | ‘ |
g E o

(Figure 10) Performance Comparison between CPU
and GPU with Proposed Second Method

H

H

g

8

6.2 Experiment Result Analysis

Since the virtual sphere object in the cloth simulation has
a discrete position value at every time step, a moment when
a high velocity sphere penetrates the surface of the cloth may
occur. Thus, the second method of moving the coordinates of
the mass-point on the mass-spring structure to the sphere
surface is better than expected to achieve a more natural and
plausible results. And because the first method only changes
the velocity vector, the sphere object penetrates the cloth
when the cloth stops or moves at a slow speed. In addition,

the penetration does not occur in a low-resolution cloth
model as it is used in experimental tests due to the effect of
radius offset applied to collision-response.

In the first performance comparison, second method
seems to be somewhat slower than first method, but still over
350 frames per second, so the both methods will be available
on real-time simulations. In Figure 10, the first measured
frames per second shows lower than other time because of
the generating compute buffers and all initializations.

From the second performance comparison test, the
implementation with GPGPU shows 60% faster than
CPU-only calculations. Despite the second proposed method
includes conditional branches and heavy calculations, the
benefit of parallelism is bigger than cons as shown in Figure
10.

6. Conclusion

Recently, as the performance of computer hardware
increases, it becomes possible to drive realistic and natural
computer graphics on various devices. However, the behavior
of objects that should be computed by dynamic simulation
such as cloth collides with other objects on the simulation is
difficult to be presented on the performance limit of the
mobile hardware platform. Therefore, this paper proposed a
more natural collision response method in the case of a
mass-spring-based cloth simulation, and compared and
analyzed them separately.

The result of moving the position of the mass-point at the
collision-detected time step on the spherical surface is more
natural than the method of reflecting only the velocity vector
in the collision with the sphere object in the mass-spring
structure. Based on this research, it is expected that it will
be useful for the development of a cloth object which shows
natural and plausible motion in real-time on digital contents
targeting various hardware platforms.

References
[1] Rommel Garcia, “GPU: The Beast In Data Centers”,

2017 [Internet]
https://www.slideshare.net/RommelGarcia2/gpu-101-t

60

2018. 12

https://www.slideshare.net/RommelGarcia2/gpu-101-the-beast-in-data-centers

Real-time Collision Response Between Cloth and Sphere Object in Unity

he-beast-in-data-centers

[2] Hartmann, Gustavo, Geoff Stead, and Asi DeGani.
“Cross-platform mobile development.” Mobile
Learning Environment, Cambridge 16.9 (2011):
158-171.

[3] Cheng, H. (2009). Interactive Cloth Simulation.
Science (pp. 1 - 8).

[4] Xavier provot, “Deformation Constraints in a Mass
-Spring Model to Describe Rigid Cloth Behavior”,
Graphics Interface, pp.147-155, 1995.

[5] O’Connor, Corey, and Keith Stevens. “Modeling
cloth using mass spring systems.” Appl. Soft.
Comput 12 (2003): 266-273.

[6] Unity, “Products”, [Internet] https://unity3d.com/unity

[7] Unity, “Company Facts”, 2017 [Internet]
https:/funity3d.com/kr/public-relations

[8] Owens, J. D., Luebke, D., Govindaraju, N., Harris,

M., Kriiger, J., Lefohn, A. E, & Purcell, T. J.
(2007, March). A survey of general purpose
computation on graphics hardware. In Computer
graphics forum (Vol. 26, No. 1, pp. 80-113).
Blackwell Publishing Ltd.

[9] Boyd, Chas. “The DirectX 11 compute shader.”
ACM SIGGRAPH. Cité page 25 (2008).

[10] Unity Documentation, “Compute Shader”, 2017,
https://docs.unity3d.com/Manual/ComputeShaders.html

[11] MSDN, “numthreads”, [INTERNET]
https://msdn.microsoft.com/en-us/library/windows/des
ktop/ff471442(v=vs.85).aspx

[12] Davis, Philip J., and Philip Rabinowitz, “Methods of
numerical integration,” Courier Corporation, 2007.

[13] Owens, J. D., Houston, M., Luebke, D., Green, S.,
Stone, J. E., & Phillips, J. C. (2008). GPU
computing. Proceedings of the IEEE, 96(5), 879-899.

ror
Hl
ro
Ll
o
0!
HT
o
tolr

| (19263)

61

Real-time Collision Response Between Cloth and Sphere Object in Unity

ONM X 2710

2 8l A(Min Sang Kim)

20179 AN w HAFELZEY o] T8t a(FsAh

20183~ A cHFg S ekl AFE SahTAD

ARl AFH 1P B 7uk ABH o)A, StEgole of Aol
E-mail : ben399399@sch.ac.kr

& =(Wook Song)

20163 AL AFELZEY 0T8T

201843 =HFHSL thekd HFE SIHE A A

HAIE-F : Virtual Reality, Augmented Reality, Rehabilitation Contents
E-mail : wook2735@sch.ac.kr

z &/ F(Yoo-Joo Choi)

19803 o] sfeqt] AzpA 8k T(o] A

1991 o] gteqth AzA SR (0] 84 AL

2005 olstolt] HFE T EIHE e

191 (HIFTAFE 7EdTLE FIITE

194\ (F)E2HolE 71EAT4 FEETE

2005 ASHIA GRS AFE L& Zus
201083~@A) AEvtjoftfetAngta FrT]olghy Fae
2015~8A] AErdoititdign AAu a4 g
-k ;. Computer Graphics, Computer Vision, HCI, Augmented Reality
E-mail : yjchoi @smit.ac.kr

E BI(Min Hong)

19959 =Gt 74k SHAKFEHAD

2001'd University of Colorado at Boulder., U.S.A., Computer Science(3-8H4Ah
20053 University of Colorado at Denver., U.S.A., Ph.D in Bio Informatics(&-3MAh
20061 ~Present =T} HAFEAZEY A F3} T} nf

A E-oF : Computer Graphics, Dynamic Simulation, Bio Informatics, Computer Vision
E-mail : mhong@sch.ac.kr

62

2018. 12

