• Title/Summary/Keyword: Computation Time

Search Result 3,160, Processing Time 0.03 seconds

Four-leaf Clover-shaped Antenna for THz Photomixer for High Output Power (높은 출력의 THz 포토믹서를 위한 네잎클로버 형태의 안테나)

  • Woo, In-Sang;Nguyen, Truong Khang;Park, Ik-Mo;Lim, Han-Jo;Han, Hae-Wook;Chu, Hong
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.5
    • /
    • pp.294-300
    • /
    • 2009
  • To improve the output power of a photomixer as a THz source, we propose a four-leaf clover-shaped antenna structure which is composed of a highly resonant radiation element and a stable DC feed element. The resonance characteristics of the proposed structure were investigated on a half-infinite substrate first as a simplified radiation environment in order to save the computation time. Based on the antenna characteristics on a half-infinite substrate, the antenna structure was designed to have a maximum total efficiency and a maximum directivity on an extended hemispherical lens. In comparison with a full-wavelength dipole, an input resistance of this structure increased six fold and this characteristic significantly improved the mismatch efficiency between a photomixer and an antenna. THz output power from this structure is expected to increase by 2.7 times as compared to a full-wavelength dipole case.

Analysis of Dose Distribution According to the Initial Electron Beam of the Linear Accelerator: A Monte Carlo Study

  • Park, Hyojun;Choi, Hyun Joon;Kim, Jung-In;Min, Chul Hee
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.10-19
    • /
    • 2018
  • Background: Monte Carlo (MC) simulation is the most accurate for calculating radiation dose distribution and determining patient dose. In MC simulations of the therapeutic accelerator, the characteristics of the initial electron must be precisely determined in order to achieve accurate simulations. However, It has been computation-, labor-, and time-intensive to predict the beam characteristics through predominantly empirical approach. The aim of this study was to analyze the relationships between electron beam parameters and dose distribution, with the goal of simplifying the MC commissioning process. Materials and Methods: The Varian Clinac 2300 IX machine was modeled with the Geant4 MC-toolkit. The percent depth dose (PDD) and lateral beam profiles were assessed according to initial electron beam parameters of mean energy, radial intensity distribution, and energy distribution. Results and Discussion: The PDD values increased on average by 4.36% when the mean energy increased from 5.6 MeV to 6.4 MeV. The PDD was also increased by 2.77% when the energy spread increased from 0 MeV to 1.019 MeV. In the lateral dose profile, increasing the beam radial width from 0 mm to 4 mm at the full width at half maximum resulted in a dose decrease of 8.42% on the average. The profile also decreased by 4.81% when the mean energy was increased from 5.6 MeV to 6.4 MeV. Of all tested parameters, electron mean energy had the greatest influence on dose distribution. The PDD and profile were calculated using parameters optimized and compared with the golden beam data. The maximum dose difference was assessed as less than 2%. Conclusion: The relationship between the initial electron and treatment beam quality investigated in this study can be used in Monte Carlo commissioning of medical linear accelerator model.

Impmvement of Inverse Fitting Algorinlm of Visible Reflectance Spectrum to Extract Skin Parameters (피부의 특성 추출을 위한 가시광선 반사 스펙트럼의 역 추적 최적화 알고리즘 개선)

  • Choi, Seung-Ho;Im, Chang-Hwan;Jung, Byung-Jo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.3
    • /
    • pp.179-184
    • /
    • 2007
  • In order to extract more accurate skin parameters, this study was focused on the improvement of the efficiency of a previous inverse fitting algorithm based on genetic algorithms. The algorithm provides the best fitting result of the diffusion approximation model to a VRS (visual reflectance spectroscopy) curve of skin. Simplex and wavelength selection methods were applied to the previous algorithm. Nine skin parameters were inversely extracted from the modeling studies. The revised inverse fitting algorithm was determined to produce an 83% reduction of computation time and a 0.64% reduction of sum of square error, compared to the previous algorithm. In conclusion, we confirmed that the new algorithm provides faster and more accurate solutions for the diffusion approximation model.

Performance Evaluation of the Generalized Hough Transform (일반화된 허프변환의 성능평가)

  • Chang, Ji-Young
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.6
    • /
    • pp.143-151
    • /
    • 2017
  • The generalized Hough transform(GHough) can be used effectively for detecting and extracting an arbitrary-shaped 2-D model in an input image. However, the main drawbacks of the GHough are both heavy computation and an excessive storage requirement. Thus, most of the researches so far have focused on reducing both the time and space requirement of the GHough. But it is still not clear how well their improved algorithms will perform under various noise in an input image. Thus, this paper proposes a new framework that can measure the performance of the GHough quantitatively. For this purpose, we view the GHough as a detector in signal detection theory and the ROC curve will be used to specify the performance of the GHough. Finally, we show that we can evaluate the GHough under various noise conditions in an input image.

A genetic algorithm for determining the optimal operating policies in an integrated- automated manufacturing system (통합자동생산시스템에서 최적운영방안 결정을 위한 유전자 알고리즘의 개발)

  • 임준목
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.2
    • /
    • pp.62-72
    • /
    • 1999
  • We consider a Direct Input Output Manufacturing System(DIOMS) which has a munber of machine centers placed along a built-in Automated Storage/Retrieval System(AS/RS). The Storage/Retrieval(S/R) machine handles parts placed on pallets for the machine centers located at either one or both sides of the AS/RS. This paper deals with the operational aspect of DIOMS and determines the optimal operating policy by combining computer simulation and genetic algorithm. The operational problem includes: input sequencing control, dispatching rule of the S/R machine, machine center-based part type selection rule and storage assignment policy. For each operating policy, several different policies are considered based on the known research results. In this paper, using the computer simulation and genetic algorithm we suggest a method which gives the optimal configuration of operating policies within reasonable computation time.

  • PDF

Privacy Preserving and Relay Attack Preventing Multi-Context RFID Mutual Authentication Protocol (프라이버시를 제공하고 중계 공격에 안전한 다중-컨텍스트 RFID 상호 인증 프로토콜)

  • Ahn, Hae-Soon;Yoon, Eun-Jun;Nam, In-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.1028-1037
    • /
    • 2011
  • Recently, Selim et al proposed public key cryptography based privacy preserving multi-context RFID authentication protocol. However Selim et al's proposed protocol not only doesn't fit into passive tag based RFID system because it uses public key based encryption algorithm to perform authentication between reader and tag, but also is insecure to an impersonation attack because it doesn't provide mutual authentication. In order to eliminate the above described efficiency problem and security vulnerabilities, this paper proposes a new multi-context RFID mutual authentication protocol that can prevent privacy invasion and tag impersonation attack through providing mutual authentication between single passive tag which is located different application space and readers which provide multi-context purposes and can secure against relay attack and denial-of-service attack. As a result, the proposed protocol performs secure mutual authentication based on the collected space and time information from the RFID reader and provides strong security and high computation efficiency because if performs secure one-way hash function and symmetric encryption operations suitable to the environments of passive RFID tags.

Analysis of Microstrip Single Line, Unmitered Bend and Coupled Line Using the Multiport Network Model (Multiport network model을 이용한 마이크로스트립 단일선로;직각벤드 및 결합선로의 해석)

  • Yun, Young;Chun, Joong-Chang;Park, Wee-Sang
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.6 no.3
    • /
    • pp.80-90
    • /
    • 1995
  • The scattering parameters of a microstrip single line, a right-angle bend and a coupled line are calculated using the multiport network model for the frequency range from 1 to 18 GHz. The single line is analyzed using the planar waveguide model. The right-angle bend is broken into two rectangular segments, and each segment is analyzed in a similar fashion as the single line. Impedance matrices corresponding to the two segments are combined by the segmentation method. In the analysis of elec- tromagnetic coupling of the coupled line, a new method is employed resulting in much less computation time than those previous methods involving Green's functions. A good agreement between the numerical results for the three structures and those from SuperCompact reveals the usefulness of the multiport network medel in analyzing complicated mirostrip single and coupled line discontinuities.

  • PDF

An Image Denoising Algorithm for the Mobile Phone Cameras (스마트폰 카메라를 위한 영상 잡음 제거 알고리즘)

  • Kim, Sung-Un
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.601-608
    • /
    • 2014
  • In this study we propose an image denoising algorithm appropriate for mobile smart phone equipped with limited computing ability, which has better performance and at the same time comparable quality comparing with previous studies. The proposed image denoising algorithm for mobile smart phone cameras in low level light environment reduces computational complexity and also prevents edge smoothing by extracting just Gaussian noises from the noisy input image. According to the experiment result, we verified that our algorithm has much better PSNR value than methods applying mean filter or median filter. Also the result image from our algorithm has better clear quality since it preserves edges while smoothing input image. Moreover, the suggested algorithm reduces computational complexity about 52% compared to the method applying original Laplacian mask computation, and we verified that our algorithm has good denoising quality by implementing the algorithm in Android smart phone.

Image based Relighting Using HDRI Enviroment Map & Progressive refinement radiosity on GPU (HDRI 환경맵과 GPU 기반 점진적 세분 래디오시티를 이용한 영상기반 재조명)

  • Kim, Jun-Hwan;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.7 no.4
    • /
    • pp.53-62
    • /
    • 2007
  • Although radiosity can represent diffuse reflections of the object surfaces by modeling energy exchange in 3D space, there are some restrictions for real-time applications because of its computation loads. Therefore, GPU(Graphics Processing Unit) based radiosity algorithms have been presented actively to improve its rendering performance. We implement the progressive refinement radiosity on GPU by G. Coombe in 3D scene that is constructed with HDR(High Dynamic Range) radiance map. This radiosity method can generate a photo-realistic rendering image in 3D space, where the synthetic objects were illuminated by the environmental light sources. In the simulation results, the rendering performance is analyzed according to the resolution of the texel in the environmental map and mipmaping. In addition, we compare the rendering results by our method with those by the incremental radiosity.

  • PDF

The Evaluation for Estimation Method of Deformation Modulus of Rock Mass Using RMR System (RMR을 이용한 암반의 주요 변형계수 추정식의 적용성 평가)

  • Chun, Byung-Sik;Lee, Yong-Jae;Jung, Sang-Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.25-32
    • /
    • 2006
  • The deformation modulus of rock masse is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relationship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masse.

  • PDF