DOI QR코드

DOI QR Code

Four-leaf Clover-shaped Antenna for THz Photomixer for High Output Power

높은 출력의 THz 포토믹서를 위한 네잎클로버 형태의 안테나

  • Woo, In-Sang (Department of Electrical and Computer Engineering Ajou University) ;
  • Nguyen, Truong Khang (Department of Electrical and Computer Engineering Ajou University) ;
  • Park, Ik-Mo (Department of Electrical and Computer Engineering Ajou University) ;
  • Lim, Han-Jo (Department of Electrical and Computer Engineering Ajou University) ;
  • Han, Hae-Wook (Department of Electrical and Computer Engineering Pohang University of Science and Technology) ;
  • Chu, Hong (Laser Optek)
  • 우인상 (아주대학교 전자공학부) ;
  • ;
  • 박익모 (아주대학교 전자공학부) ;
  • 임한조 (아주대학교 전자공학부) ;
  • 한해욱 (포항공과대학교 전자컴퓨터공학과) ;
  • 주홍 (레이저옵텍)
  • Published : 2009.10.25

Abstract

To improve the output power of a photomixer as a THz source, we propose a four-leaf clover-shaped antenna structure which is composed of a highly resonant radiation element and a stable DC feed element. The resonance characteristics of the proposed structure were investigated on a half-infinite substrate first as a simplified radiation environment in order to save the computation time. Based on the antenna characteristics on a half-infinite substrate, the antenna structure was designed to have a maximum total efficiency and a maximum directivity on an extended hemispherical lens. In comparison with a full-wavelength dipole, an input resistance of this structure increased six fold and this characteristic significantly improved the mismatch efficiency between a photomixer and an antenna. THz output power from this structure is expected to increase by 2.7 times as compared to a full-wavelength dipole case.

테라헤르츠 광원인 포토믹서의 출력을 향상시키기 위하여 강한 공진의 복사부와 안정적인 DC 급전부로 구성된 네잎클로버 형태의 새로운 안테나구조를 제안하였다. 먼저 복사환경을 단순화시킨 무한기판 위에서 제안한 안테나구조의 공진특성을 살펴보았고, 이를 바탕으로 제안한 구조가 확장형 반구렌즈 위에서 최대의 전체효율과 지향성을 지니도록 설계하였다. 기존의 전파장다이폴안테나와 비교한 결과, 제안한 구조는 공진주파수에서 6배 이상의 높은 입력임피던스 특성을 가짐으로써 포토믹서와의 부정합효율을 크게 개선시켰으며, 이로 인해 테라헤르츠 출력이 전파장 다이폴의 경우보다 2.7배 높게 예상되었다.

Keywords

References

  1. A. Markelz, S. Whitemore. J. Hillebrecht, and R. Birge, “THz time domain spectroscopy of biomolecular conformation modes,” Phys. Med. Biol. 47, 3797-3805 (2002). https://doi.org/10.1088/0031-9155/47/21/318
  2. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20, 1716-1718 (1995). https://doi.org/10.1364/OL.20.001716
  3. S. J. Oh, C. Kang, and J.-H. Son, “Imaging with terahertz electromagnetic pulses,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 15, 46-50 (2004). https://doi.org/10.3807/KJOP.2004.15.1.046
  4. I. H. Maeng and J.-H. Son, “Optical properties of human tooth in terahertz frequency region,” in Proc. OSK Annual Meeting (Univ. of Seoul, Korea, Feb. 2009), pp. 529-530.
  5. E. Jung, H. Park, J. Kim, and H. Han, “Terahertz pulse imaging of articular cartilage tissues,” in Proc. OSK Summer Meeting (Jeju Univ., Korea, July 2006), pp. 529-530.
  6. T. Kleine-Ostmann, K. Pierz, G. Hein, P. Dawson, and M. Koch, “Audio signal transmission over THz communication channel using semiconductor modulator,” Electron. Lett. 40, 124-126 (2004). https://doi.org/10.1049/el:20040106
  7. D. H. Auston, K. P. Cheung, and P. R. Smith, “Picosecond photo-conducting hertzian dipoles,” Appl. Phys. Lett. 45, 284-286 (1984). https://doi.org/10.1063/1.95174
  8. B. B. Hu, X.-C. Zhang, D. H. Auston, and P. R. Smith, “Free-space radiation from electro-optic crystals,” Appl. Phys. Lett. 56, 506-508 (1990). https://doi.org/10.1063/1.103299
  9. Y.-S. Jin, S.-G. Jeon, K.-J. Kim, C.-H. Sohn, and S.-S. Jung, “Pulsed terahertz emission and detection properties from ZnTe crystal,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 16, 553-559 (2005). https://doi.org/10.3807/KJOP.2005.16.6.553
  10. E. R. Brown, F. W. Smith, and K. A. McIntosh, “Coherent millimeter-wave generation by heterodyne conversion in low-temperature-grown GaAs photoconductors,” J. Appl. Phys. 73, 1480-1484 (1993). https://doi.org/10.1063/1.353222
  11. E. Brundermann, E. E. Haller, and A. V. Muravjov, “Terahertz emission of population-inverted hot-holes in single-crystalline silicon,” Appl. Phys. Lett. 73, 723-725 (1998). https://doi.org/10.1063/1.121980
  12. B. C. Lee, Y. U. Jeong, S. H. Park, and S. J. Hahn, “Status and prospect of free electron lasers,” J. Kor. Vac. Soc. 15, 435-450 (2006).
  13. R. Kohler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156-159 (2002). https://doi.org/10.1038/417156a
  14. E. Linfield, “Terahertz application: A source of fresh hope,” Nature Photonics 1, 257-258 (2007). https://doi.org/10.1038/nphoton.2007.56
  15. R. E. Miles, X.-C. Zhang, H. Eisele, and A. Krotkus, Terahertz Frequency Detection and Identification of Materials and Objects (Springer, Berlin, Germany, 2007), pp. 167-184.
  16. O. Morikawa, M. Tonouchi, M. Tani, K. Sakai, and M. Hangyo, “Sub-THz emission properties of photoconductive antennas excited with multimode laser diode,” Jpn. J. Appl. Phys. 38, 1388-1389 (1999). https://doi.org/10.1143/JJAP.38.1388
  17. S. M. Duffy, S. Verghese, K. A. McIntosh, A. Jackson, A. C. Gossard, and S. Matsuura, “Accurate modeling of dual dipole and slot elements used with photomixers for coherent terahertz output power,” IEEE Tans. Microwave Theory Tech. 49, 1032-1038 (2001). https://doi.org/10.1109/22.925487
  18. K. Moon, H. Han, and I. Park, “Terahertz folded half-wavelength dipole antenna for high output power,” in Proc. International Topical Meeting on Microwave Photonics (Seoul, Korea, Oct. 2005), pp. 301-304.
  19. K. Han, T. K. Nguyen, and I. Park, “A terahertz Yagi-Uda antenna with high input impedance,” Hankook Kwanghak Hoeji (Korean J. Opt. Photon.) 20, 65-75 (2009). https://doi.org/10.3807/HKH.2009.20.2.065
  20. U. D. Keli, D. R. Dykarr, A. F. J. Levi, R. F. Kopf, L. N. Pfeiffer, S. B. Darack, and K. W. West, “High-speed coplanar transmission line,” IEEE J. Quantum Electron. 28, 2333-2342 (1992). https://doi.org/10.1109/3.159540
  21. S. Y. Chou, Y. Liu, and P. B. Fischer, “Tera-hertz metal-semiconductor-metal photodetectors with 25 nm finger spacing and finger width,” Appl. Phys. Lett. 61, 477-479 (1992). https://doi.org/10.1109/3.159540
  22. M. Kominami, D. M. Pozar, and D. H. Schaubert, “Dipole and slot elements and arrays on semi-infinite substrate,” IEEE Trans. Antennas Propagat. 33, 600-607 (1985). https://doi.org/10.1109/TAP.1985.1143638
  23. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New York, USA, 1997), pp. 60-61.
  24. K. Moon, Ph. D. Thesis, Pohang Univerisity of Science and Technology (2007), pp. 59-73.
  25. K. J. Button, Infrared and Millimeter Waves (Academic Press, New York, USA, 1983), vol. 10, pp. 1-90.
  26. D. F. Filipovic, S. S. Gearhart, and G. M. Rebeiz, “Double-slot antennas on extended hemispherical and elliptical silicon dielectric lenses,” IEEE Trans. Microwave Theory Tech. 41, 1738-1749 (1993). https://doi.org/10.1109/22.247919
  27. M. J. M. van der Vorst, P. J. I. de Maagt, and M. H. A. Herben, “Effect on internal reflection on the radiation properties and input admittance of integrated lens antennas,” IEEE Trans. Microwave Theory Tech. 47, 1696-1704 (1999). https://doi.org/10.1109/22.788611