• Title/Summary/Keyword: Computation Grid

Search Result 298, Processing Time 0.027 seconds

Distributed Grid Scheme using S-GRID for Location Information Management of a Large Number of Moving Objects (대용량 이동객체의 위치정보 관리를 위한 S-GRID를 이용한 분산 그리드 기법)

  • Kim, Young-Chang;Kim, Young-Jin;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.4
    • /
    • pp.11-19
    • /
    • 2008
  • Recently, advances in mobile devices and wireless communication technologies require research on various location-based services. As a result, many studies on processing k-nearest neighbor query, which is most im portant one in location-based services, have been done. Most of existing studies use pre-computation technique to improve retrieval performance by computing network distance between POIs and nodes beforehand in spatial networks. However, they have a drawback that they can not deal with effectively the update of POIs to be searched. In this paper, we propose a distributed grid scheme using S-GRID to overcome the disadvantage of the existing work as well as to manage the location information of a large number of moving objects in efficient way. In addition, we describe a k-nearest neighbor(k-NN) query processing algorithm for the proposed distributed grid scheme. Finally, we show the efficiency of our distributed grid scheme by making a performance comparison between the k-NN query processing algorithm of our scheme and that of S-GRID.

  • PDF

Prediction of the Diffusion Controlled Boundary Layer Transition with an Adaptive Grid (적응격자계를 이용한 경계층의 확산제어천이 예측)

  • Cho J. R.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.15-25
    • /
    • 2001
  • Numerical prediction of the diffusion controlled transition in a turbine gas pass is important because it can change the local heat transfer rate over a turbine blade as much as three times. In this study, the gas flow over turbine blade is simplified to the flat plate boundary layer, and an adaptive grid scheme redistributing grid points within the computation domain is proposed with a great emphasis on the construction of the grid control function. The function is sensitized to the second invariant of the mean strain tensor, its spatial gradient, and the interaction of pressure gradient and flow deformation. The transition process is assumed to be described with a κ-ε turbulence model. An elliptic solver is employed to integrate governing equations. Numerical results show that the proposed adaptive grid scheme is very effective in obtaining grid independent numerical solution with a very low grid number. It is expected that present scheme is helpful in predicting actual flow within a turbine to improve computation efficiency.

  • PDF

Density Adaptive Grid-based k-Nearest Neighbor Regression Model for Large Dataset (대용량 자료에 대한 밀도 적응 격자 기반의 k-NN 회귀 모형)

  • Liu, Yiqi;Uk, Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.2
    • /
    • pp.201-211
    • /
    • 2021
  • Purpose: This paper proposes a density adaptive grid algorithm for the k-NN regression model to reduce the computation time for large datasets without significant prediction accuracy loss. Methods: The proposed method utilizes the concept of the grid with centroid to reduce the number of reference data points so that the required computation time is much reduced. Since the grid generation process in this paper is based on quantiles of original variables, the proposed method can fully reflect the density information of the original reference data set. Results: Using five real-life datasets, the proposed k-NN regression model is compared with the original k-NN regression model. The results show that the proposed density adaptive grid-based k-NN regression model is superior to the original k-NN regression in terms of data reduction ratio and time efficiency ratio, and provides a similar prediction error if the appropriate number of grids is selected. Conclusion: The proposed density adaptive grid algorithm for the k-NN regression model is a simple and effective model which can help avoid a large loss of prediction accuracy with faster execution speed and fewer memory requirements during the testing phase.

A STUDY OF THE APPLICATION OF DELAUNAY GRID GENERATION ON GPU USING CUDA LIBRARY (GPU Library CUDA를 이용한 효율적인 Delaunay 격자 생성에 관한 연구)

  • Song, J.H.;Kang, S.H.;Kim, G.M.;Kim, B.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194-198
    • /
    • 2011
  • In this study, an efficient algorithm for Delaunay triangulation of a number of points which can be used on a GPU-based parallel computation is studied The developed algorithm is programmed using CUDA library. and the program takes full advantage of parallel computation which are concurrently performed on each of the threads on GPU. The results of partitioned triangulation collected from the GPU computation requires proper stitching between neighboring partitions and calculation of connectivities among triangular cells on CPU In this study, the effect of number of threads on the efficiency and total duration for Delaunay grid generation is studied. And it is also shown that GPU computing using CUDA for Delaunay grid generation is feasible and it saves total time required for the triangulation of the large number points compared to the sequential CPU-based triangulation programs.

  • PDF

FREE SURFACE FLOW ANALYSIS BY SOROBAN GRID BASED CIP MEHTOD (Soroban grid 기반 CIP법을 이용한 자유표면 유동해석)

  • Im, H.N.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.326-334
    • /
    • 2010
  • In this study, we provide a comprehensive review of the CIP(Constrained Interpolation Pro file/Cubic Interpolated Propagation) method with a pressure-based algorithm that is known as a general numerical solver for soled liquid, gas and plasmas. And also we introduce a body-fitted grid system(Soroban grid) for computation of strongly nonlinear marine hydrodynamic problems such as slamming water on deck, wave impact by green water. This grid system can keep the third-order accuracy in time and space with the help of the CIP method. The grid system consists of the straight lines and grid points. In the 2-dimensional grid case, each grid points moving in these lines like abacus - Soroban in Japanese. The length of each line can be different and the number of grid points in each line can be different. Mesh generation and searching of upstream departure point are very simple and possible to mesh-free treatment. To optimize computation of free-surface and multi-fluid flows, We adopt the C-CUP method. In most of the earlier computations, the C-CUP method was used with a staggered-grid approach. Here, because of the mesh free nature of the Soroban grid, we use the C-CUP method with a collocated-grid approach.

  • PDF

An Improved Face Recognition Method Using SIFT-Grid (SIFT-Grid를 사용한 향상된 얼굴 인식 방법)

  • Kim, Sung Hoon;Kim, Hyung Ho;Lee, Hyon Soo
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.299-307
    • /
    • 2013
  • The aim of this paper is the improvement of identification performance and the reduction of computational quantities in the face recognition system based on SIFT-Grid. Firstly, we propose a composition method of integrated template by removing similar SIFT keypoints and blending different keypoints in variety training images of one face class. The integrated template is made up of computation of similarity matrix and threshold-based histogram from keypoints in a same sub-region which divided by applying SIFT-Grid of training images. Secondly, we propose a computation method of similarity for identify of test image from composed integrated templates efficiently. The computation of similarity is performed that a test image to compare one-on-one with the integrated template of each face class. Then, a similarity score and a threshold-voting score calculates according to each sub-region. In the experimental results of face recognition tasks, the proposed methods is founded to be more accurate than both two other methods based on SIFT-Grid, also the computational quantities are reduce.

An Efficient Grid Method for Continuous Skyline Computation over Dynamic Data Set

  • Li, He;Jang, Su-Min;Yoo, Kwan-Hee;Yoo, Jae-Soo
    • International Journal of Contents
    • /
    • v.6 no.1
    • /
    • pp.47-52
    • /
    • 2010
  • Skyline queries are an important new search capability for multi-dimensional databases. Most of the previous works have focused on processing skyline queries over static data set. However, most of the real applications deal with the dynamic data set. Since dynamic data set constantly changes as time passes, the continuous skyline computation over dynamic data set becomes ever more complicated. In this paper, we propose a multiple layer grids method for continuous skyline computation (MLGCS) that maintains multiple layer grids to manage the dynamic data set. The proposed method divides the work space into multiple layer grids and creates the skyline influence region in the grid of each layer. In the continuous environment, the continuous skyline queries are only handled when the updating data points are in the skyline influence region of each layer grid. Experiments based on various data distributions show that our proposed method outperforms the existing methods.

A Light-weight, Adaptive, Reliable Processing Integrity Audit for e-Science Grid (e-Science 그리드를 위한 가볍고, 적응성있고, 신뢰성있는 처리 무결성 감사)

  • Jung, Im-Young;Jung, Eun-Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.5
    • /
    • pp.181-188
    • /
    • 2008
  • E-Science Grid is designed to cope with computation-intensive tasks and to manage a huge volume of science data efficiently. However, certain tasks may involve more than one grid can offer in computation capability or incur a long wait time on other tasks. Resource sharing among Grids can solve this problem with proper processing-integrity check via audit. Due to their computing-intensive nature, the processing time of e-Science tasks tends to be long. This potential long wait before an audit failure encourages earlier audit mechanism during execution in order both to prevent resource waste and to detect any problem fast. In this paper, we propose a Light-weight, Adaptive and Reliable Audit, LARA, of processing Integrity for e-Science applications. With the LARA scheme. researchers can verify their processing earlier and fast.

Prediction of antenna characteristics using Wire-Grid method (Wire-Grid 기법을 이용한 안테나특성 예측)

  • 조웅희;간종만;이응주
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.3 no.2
    • /
    • pp.10-15
    • /
    • 1992
  • The electromagentic characteristics of antennas in the complicated metallic structures were analyzed using the electric field integral equation. The accurancy of computer program was confirmed by comparing the computation result with NELC brass model study. And computation result of antenna characteristics in metallic structures was in good argreement with our measuring result.

  • PDF

Evaluation of Optimal Grid Resolution for Hydrodynamic Proper Simulation (수리동역학적 모의를 위한 적정 격자해상도 산정방법)

  • Ahn, Jung-Min;Park, In-Hyeok;Lyu, Si-Wan;Hur, Young-Teck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.109-116
    • /
    • 2012
  • The effect of the grid resolution on the hydrodynamic simulation has been investigated by using CCHE2D and EFDC. Since a high resolution of the grid results in the increase of computation time, an appropriate grid resolution should be selected by considering the efficiency of simulation according to the objectives of projects. In order to understand the effect of grid resolution and determine the optimal grid resolution, several cases with different lateral grid resolutions have been simulated for the reach of Nakdong river at the confluence of Kumho river for the floods in 2006. Orthogonal curvilinear grids for the domain have been constructed from the survey products at the sections with the longitudinal interval of 20 m. Area-elevation curve and the comparison of simulated results with measured stage at the specific station have been used to check the effect of grid resolution. From the results, the existence of optimal grid resolution has been observed, which ensure both efficiency of computation and certainty of results.